

INSTALLATION & OWNER'S MANUAL

Aquantia Bibloc Indoor Unit

KIT KHP BI 8 VN KIT KHP BI 16 VN KIT KHP BI 16 TN

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP_I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)
- 4 SV1: Motorized 3-way valve (field supply)
- 5 Buffer tank (field supply)
- 6 Balance tank (field supply)
- 6.1 Air vent valve(field supply)
- 6.2 Drain valve(field supply)
- 7 P_o: Circulating pump (field supply)
- 8 SV2: Motorized 2-way valve (field supply)
- 9 Mixing station (field supply)
- 9.1 Mixing valve(field supply)
- 9.2 P_c: Mixing pump(field supply)
- 10 P_s: Solar pump (field supply)

- 11 P_d: DHW pipe pump (field supply)
- 12 T5: Domestic water tank temp. sensor (accessory)
- 13 T1B: Final outlet water temperature sensor (optional)
- 14 Expansion vessel (field supply)
- 15 Domestic hot water tank (field supply)
- 15.1 TBH: Domestic hot water tank booster heater
- 15.2 Coil heat exchanger for heat pump
- 15.3 Coil heat exchanger for solar
- 16 Filter (accessory)
- 17 Non return valve (field supply)
- 18 Aquastat valve (field supply)
- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 22 Tap water inlet pipe (field supply)
- 23 Hot water tap (field supply)
- 24 Room thermostat (field supply)
- SP Solar plate (field supply)
- AHS Additional heat source (field supply)
- FCU Fan coil unit (field supply)
- RU Radiator unit (field supply)
- FHL Floor heating loop (field supply)

NOTE

If domestic hot water tank is connected into the system, 12 (T5, accessory) must be installed into the domestic hot water tank and connected to indoor unit.

If AHS is connected into the system, 13 (T1B, optional accessory) must be installed at the final water outlet pipe and connected to indoor unit

Components 4, 7, 8, 9.2, 10, 11, AHS are needed to be connected to indoor unit and be controlled by indoor unit.

CONTENTS PAGE

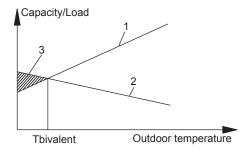
1	INTRODUCTION	1
2	ACCESSORIES	2
3	SAFETY CONSIDERATIONS	2
4	TYPICAL APPLICATION EXAMPLES	4
5	INSTALLATION OF THE INDOOR UNIT	14
6	START-UP AND CONFIGURATION	28
7	TEST RUN AND FINAL CHECK	40
8	MAINTENANCE AND SERVICE	40
9	TROUBLE SHOOTING	40
10	PARAMETERS CHECK IN THE UNIT	42
11	TECHNICAL SPECIFICATIONS	44

$\overline{\mathbf{A}}$

READ THESE INSTRUCTIONS CAREFULLY BEFORE INSTALLATION. KEEP THIS MANUAL IN A HANDY PLACE FOR FUTURE REFERENCE.

IMPROPER INSTALLATION OR ATTACHMENT OF EQUIPMENT OR ACCESSORIES COULD RESULT IN ELECTRIC SHOCK, SHORT-CIRCUIT, LEAKS, FIRE OR OTHER DAMAGE TO THE EQUIPMENT. BE SURE ONLY TO USE ACCESSORIES MADE BY THE SUPPLIER WHICH ARE SPECIFICALLY DESIGNED FOR USE WITH THE EQUIPMENT AND HAVE THEM INSTALLED BY A PROFESSIONAL.

ALL ACTIVITIES DESCRIBED IN THIS MANUAL SHALL BE CARRIED OUT BY A LICENSED TECHNICIAN.


BE SURE TO WEAR ADEQUATE PERSONEL PROTECTION EQUIPMENT (PROTECTION GLOVES, SAFETY GLASSES,) WHEN PERFORMING INSTALLATION, MAINTENANCE OR SERVICE TO THE UNIT.

IF UNSURE OF INSTALLATION PROCEDURES OR USE, ALWAYS CONTACT YOUR DEALER FOR ADVICE AND INFORMATION.

1 INTRODUCTION

1.1 General information

- These units are used for both heating and cooling applications. The units can be combined with fan coil units, floor heating applications, low temperature high efficiency radiators, domestic hot water tank (option) and solar kit (field supply).
- A wired remote controller is standard supplied with the unit to control your installation.
- The unit is delivered with an integrated backup heater for additional heating capacity during cold outdoor temperatures. The backup heater also serves as a backup in case of malfunctioning of the unit and for freeze protection of the outside water piping during winter time. The capacity of backup heater for different unit listed below.

- 1. Heat pump capacity
- 2. Required heating capacity (site dependent)
- 3. Additional heating capacity provided by the backup heater

Power supply	1-			phase			3-phase			
Indoor unit model	KIT KHP BI 8 VN			KIT KHP BI 16 VN			KIT KHP BI 16 TN			
Capacity of outdoor unit [kW]	4	4 6 8		10	12	14	16	12	14	16
Capacity of backup heater		3						4	4.5kW	'

■ Domestic hot water tank (option)

An optional domestic hot water tank with integrated 3 kW electrical booster heater can be connected to the unit.

The domestic hot water tank is available in two sizes: 200 and 300 litre.

There is a heat change coil pipe in the tank, if the coil pipe is enamelled, the heat exchange surface is required to be larger than 1.7m² for matching the KIT KHP BI 16 VN or KIT KHP BI 16 TN unit, and the heat exchanger surface is required to be larger than 1.4m² for matching the KIT KHP BI 8 VN unit.

Room thermostat (field supply)

An optional room thermostat can be connected to the unit.

- Solar kit for domestic hot water tank (field supply)
 An optional solar kit can be connected to the unit.
- Remote alarm kit (field supply)

A remote alarm kit can be connect to the unit.

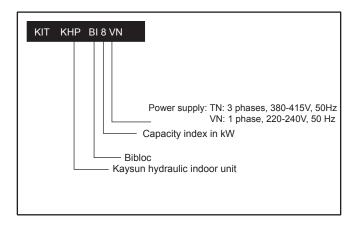
CAUTION

To Disconnect the Appliance from Main Power Supply.

This appliance must be connected to the main power supply by means of a switch with a contact separation of at least 3 mm. The installation fuse must be used for the power supply line of this heater pump.

No heat pump operation, backup heater or boiler only.

(*) The models have a frozen prevention function using the heat pump and back up heater to keep the water system safe from freezing in all conditions. In case accidental or intentional power shutdown is likely to happen, we recommend to use glycol (-Refer to 9.3 Water pipework caution: "Use of glycol").


Capacity test

If want to do the capacity test, please contact the manufacturer.

1.2 Scope of this manual

This installation & owner's manual describes the procedures for installing and connecting all monobloc outdoor unit models.

1.3 Model identification

1.4 Operating range

Operationg range of indoor unit					
Outlet water (Heating mode)	+25 ~ +60°C				
Outlet water (Cooling mode)	+5 ~ +25°C				
Domestic hot water	+40 ~ +60°C				
Ambient temperature	-20 ~ +46°C				
Water pressure	0.3~3bar(g)				

2 ACCESSORIES

	Names	Shpae	Quantity
	Indoor unit installation & owner's manual (This book)		1
	2. Y-shape filter		1
v	3. Mounting bracket		1
Installation fittings	User interface kit (digital remote controller)	100 A 1000 4 1000 4 1 2	1
tallati	5. M8 expansion screws		5
lns	T5 temperature sensor for domestic hot water tank	0	1
	7. Copper nut	_	1
	User interface installation & owner's manual		1

3 SAFETY CONSIDERATIONS

The precautions listed here are divided into the following two types. Both cover very important topics, so be sure to follow them carefully.

Meanings of DANGER, WARNING, CAUTION and NOTE symbols.

DANGER

Indicates an imminently hazardous situation which, if not avoided, will result in serious injury.

WARNING

WARNINGIndicates a potentially hazardous situation which, if not avoided, could result or serious injury.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

NOTE

Indicates situations that may result in equipment or property-damage accidents only.

DANGER

- Before touching electric terminal parts, turn off power switch.
- When service panels are removed, live parts can be easily touched by accident.
 - Never leave the unit unattended during installation or servicing when the service panel is removed.
- Do not touch water pipes during and immediately after operation as the pipes may be hot. Your hand may suffer burns. To avoid injury, give the piping time to return to normal temperature or be sure to wear proper gloves.
- Do not touch any switch with wet fingers. Touching a switch with wet fingers can cause electrical shock.
- Before touching electrical parts, turn off all applicable power supply.

WARNING

- Tear apart and throw away plastic packaging bags so that children will not play with them.
 - Children playing with plastic bags face danger by suffocation.
- Safely dispose of packing materials. Packing materials, such as nails and other metal or wooden parts, may cause stabs or other injuries.
- Ask your dealer or qualified personnel to carry out installation work.
 - Do not install the machine by yourself.
 - Improper installation may result in water leakage, electric shocks or fire.
- Perform installation work in accordance with this installation manual.Improper installation may lead to water leakage, electric shocks or fire.
- Be sure to use only the specified accessories and parts for installation work.
 - Failure to use the specified parts may result in water leakage, electric shocks, fire, or the unit falling.
- Install the unit on a foundation that can withstand its weight.
- Insufficient strength may result in the fall of equipment and causing injury.
- Carry out the specified installation work in consideration of strong winds, hurricanes, or earthquakes.
 Improper installation work may result in accidents due to fall of equipment.

- Make certain that all electrical work is carried out by qualified personnel according to the local laws and regulations and this Installation & owner's manual, using a separate circuit. Insufficient capacity of the power supply circuit or improper electrical construction may lead to electric shocks or fire.
- Be sure to install a ground fault circuit interrupter according to local laws and regulations.
 Failure to install a ground fault circuit interrupter may cause electric shocks and fire.
- Make sure that all wiring is secure, using the specified wires and ensuring that external forces do not act on the terminal connections or wires.

Incomplete connection or fixing may cause a fire.

- When wiring the power supply, form the wires so that the frontside panel can be securely fastened. If the frontside panel is not in place, overheat of the terminals, electric shocks or a fire may be caused.
- After completing the installation work, check to make sure that there is no leakage of refrigerant gas.
- Never directly touch any accidental leaking refrigerant. This could result in severe wounds caused by frostbite.
- Do not touch the refrigerant pipes during and immediately after operation as the refrigerant pipes may be hot or cold, depending on the condition of the refrigerant flowing through the refrigerant piping, compressor and other refrigerant cycle parts. Your hands may suffer burns or frostbite if you touch the refrigerant pipes. To avoid injury, give the pipes time to return to normal temperature or, if you must touch them, be sure to wear proper gloves.
- Do not touch the internal parts (pump, backup heater, etc.) during and immediately after operation.
 Your hands may suffer burns if you touch the internal parts.
 To avoid injury, give the internal parts time to return to normal temperature or if you must touch them be sure to wear proper

temperature or, if you must touch them, be sure to wear proper gloves.

- This appliance can be used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved. Children shall not play with the appliance. Cleaning and user maintenance shall not be made by children without supervision.
- If the supply cord is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.
- If the supply cord is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.
- If an appliance is intender to be permanently connected to the water mains and not connected by hose-set, this shall be stated.

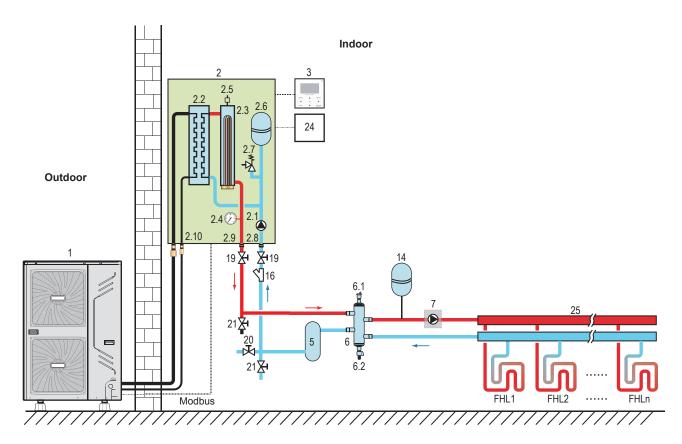
CAUTION

- For use of units in applications with temperature alarm settings it is advised to foresee a delay of 10 minutes for signalling the alarm in case the alarm temperature is exceeded. The unit may stop for several minutes during normal operation for "defrosting of the unit" or when in "thermostat-stop" operation.
- Ground the unit.

Grounding resistance should be according to local laws and regulations

Do not connect the ground wire to gas or water pipes, lightning conductor or telephone ground wire Incomplete grounding may cause electric shocks.

Ignition or explosion may occur if the gas leaks.


- b) Water pipe.
- Hard vinyl tubes are not effective grounds.
- c) Lightning conductor or telephone ground wire. Electric potential may rise abnormally if struck by a lightning bolt.
- Install the power wire at least 3 feet (1 meter) away from televisions or radios to prevent image interference or noise. (Depending on the radio waves, a distance of 3 feet (1 meter) may not be sufficient to eliminate the noise.)
- Do not rinse the unit. This may cause electric shocks or fire. the appliance shall be installed in accordance with national wiring regulations; If the supply cord is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.
- Do not install the unit in places such as the following:
 - a) Where there is mist of mineral oil, oil spray or vapour. Plastic parts may deteriorate, and cause them to fall out or water to leak.
 - b) Where corrosive gas, such as sulphurous acid gas, is produced.
 - Corrosion of copper pipes or soldered parts may cause the refrigerant to leak.
 - c) Where there is machinery which emits electromagnetic waves. Electromagnetic waves may disturb the control system, and cause malfunction of the equipment.
 - d) Where flammable gases may leak, where carbon fibre or ignitable dust is suspended in the air or where volatile flammables, such as thinner or gasoline, are handled. Such gases may cause a fire.
 - e) Where the air contains high levels of salt such as that near the ocean.
 - f) Where voltage fluctuates a lot, such as that in factories.
 - g) In vehicles or vessels.
 - h) Where acidic or alkaline vapour is present.

4 TYPICAL APPLICATION EXAMPLES

The application examples given below are for illustration purposes only.

4.1 Application 1

Space heating only application with a room thermostat connected to the unit.

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP_I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)
- 5 Buffer tank (field supply)
- 6 Balance tank (field supply)
- 6.1 Air vent valve
- 6.2 Drain valve
- 7 P_o: Outside circulating pump (field
 - supply)

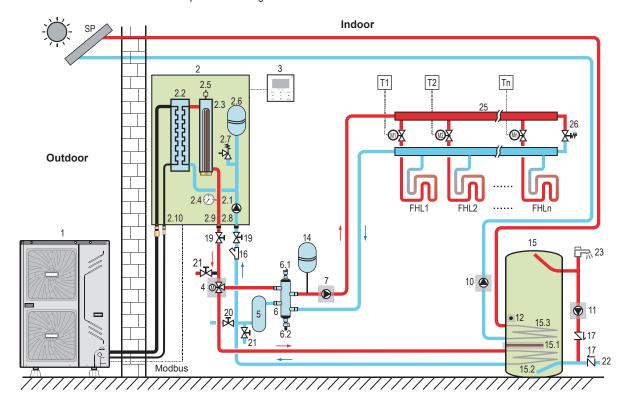
- 14 Expansion vessel (field supply)
- 16 Filter (accessory)
- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 24 Room thermostat (field supply)
- 25 Collector (field supply)
- FHL1...n Floor heating loop (field supply)

NOTE

The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

Unit operation and space heating

When a room thermostat is connected to the unit and when there is a heating request from the room thermostat, the unit will start operating to achieve the target water flow temperature as set on the user interface. When the room temperature is above the thermostat set point in heating mode, the unit (1) and (2) will stop operating, the circulating pump(2.1) and (7) will stop running also, the room thermostat uesd as a switch here.



NOTE

Make sure to connect the thermostat wires to the correct terminals method B should be selected (see "For room thermostat" on "Connection for other components") and to configure the ROOM THERMOSTAT in the FOR SERVICEMAN correctly (see "Field settings/ROOM THERMOSTAT")

4.2 Application 2

Space heating only application without room thermostat connected to the unit. The temperature in each room is controlled by a valve on each water circuit. Domestic hot water is provided through the domestic hot water tank which is connected to the unit.

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)

- 4 SV1: Motorized 3-way valve (field supply)
- 5 Buffer tank (field supply)
- 6 Balance tank (field supply)
- 6.1 Air vent valve
- 6.2 Drain valve
- 7 P_o: Outside circulating pump (field supply)
- 10 P_s: Solar pump (field supply)
- 11 P d: DHW pipe pump (field supply)
- 12 T5: Domestic water tank temperature sensor (accessory)
- Expansion vessel (field supply)
- 15 Domestic hot water tank (field supply)
- 15.1 TBH: Domestic hot water tank booster heater
- 15.2 Coil heat exchanger for heat pump

- 15.3 Coil heat exchanger for solar
- 16 Filter (accessory)
- 17 Non return valve (field supply)
- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 22 Tap water inlet pipe (field supply)
- 23 Hot water tap (field supply)
- 25 Collector (field supply)
- 26 Bypass valve (field supply)
- SP Solar plate (field supply)
- FHL1...n Floor heating loop (field supply)
- M1...n Motorized valve (field supply)
- T1...n Room thermostat (field supply)

NOTE

The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

Circulated pump operation

With no room thermostat connected to the indoor unit (2), the circulating pump (2.1) and (7) will operate as long as the unit is on for space heating. The circulating pump (2.1) will operate as long as the unit is on for heating domestic hot water(DHW).

Space heating

- 1) The unit (1) and (2) will operate to achieve the target water flow temperature as set on the user interface.
- 2) When circulation in each space heating loop (FHL1..n) is controlled by remotely controlled valves (M1..n), it is important to provide a bypass valve (26) to avoid the flow switch safety device from being activated. The by-pass valve should be selected as such that at all time the minimum water flow as mentioned under "TECHNICAL SPECIFICATIONS" is guaranteed.

Domestic water heating

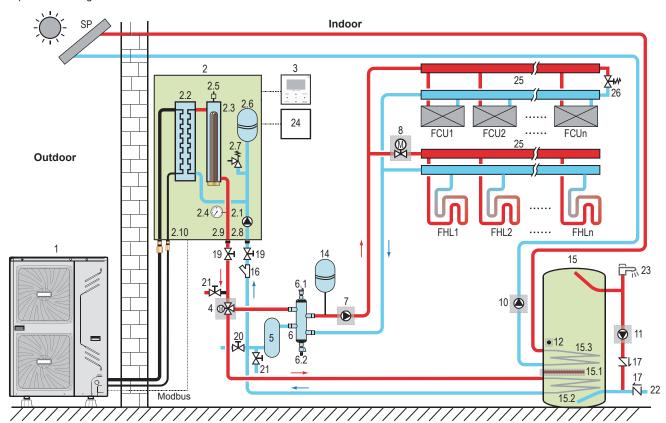
- 1) When domestic water heating mode is enabled (either manually by the user, or automatically through a schedule) the target domestic hot water temperature will be achieved by a combination of the heat exchanger coil and the electrical booster heater (when the booster heater in the tank is configured YES).
- 2) When the domestic hot water temperature is below the user configured set point, the 3-way valve(4) will be activated to heat the domestic water by means of the heat pump. In case of large domestic hot water demand or a high domestic hot water temperature setting, the booster heater (15.1) can provide additional heating.

■ DHW pipe pump operation

- 1) The DHW pipe pump(11) is used to circulate the domestic hot water through the hot tap water pipes for keeping the water in the hot tap water pipes in order to make the hot water coming quickly when user open the tap.
- The DHW pipe pump(11) will operate for a period of time when the time reaches the set timers which have be set by user interface. More details refer to the manual of user interface.

CAUTION

Make sure to fit the 3-way valve correctly. For more details, refer to "Connection for other components/For 3-way valve SV1".


NOTE

The unit can be configured so that at low outdoor temperatures the domestic water is exclusively heated by the booster heater. This assures that the full capacity of the heat pump is available for space heating.

Details on domestic hot water tank configuration for low outdoor temperature (T4DHWMIN) can be found under "Field settings/how to set the DHW MODE".

4.3 Application 3

Space cooling and heating application with a room thermostat suitable for heating/cooling changeover connected to the unit. Heating is provided through floor heating loops and fan coil units. Cooling is provided through the fan coil units only. Domestic hot water is provided through the domestic hot water tank which is connected to the unit.

- Outdoor unit
- 2 Indoor unit
- 2.1 PUMP_I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)
- 4 SV1: Motorized 3-way valve (field supply)

- 5 Buffer tank (field supply)
- 6 Balance tank (field supply)
- 6.1 Air vent valve
- 6.2 Drain valve
- 7 P o: Outside circulating pump (field supply)
- 8 SV2: Motorized 2-way valve (field supply)
- 10 P_s: Solar pump (field supply)
- 11 P_d: DHW pipe pump (field supply)
- 12 T5: Domestic water tank temperature sensor (accessory)
- 14 Expansion vessel (field supply)
- 15 Domestic hot water tank (field supply)
- 15.1 TBH: Domestic hot water tank booster heater
- 15.2 Coil heat exchanger for heat pump
- 15.3 Coil heat exchanger for solar

- 16 Filter (accessory)
- Non return valve (field supply)
- Shut-off valve (field supply) 19
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 22 Tap water inlet pipe (field supply)
- Hot water tap (field supply)
- 24 Room thermostat (field supply)
- 25 Collector (field supply)
- 26 Bypass valve (field supply)
- SP Solar plate (field supply)
- FHL1...n Floor heating loop (field supply)
- FCU1...n Fan coil unit (field supply)

NOTE

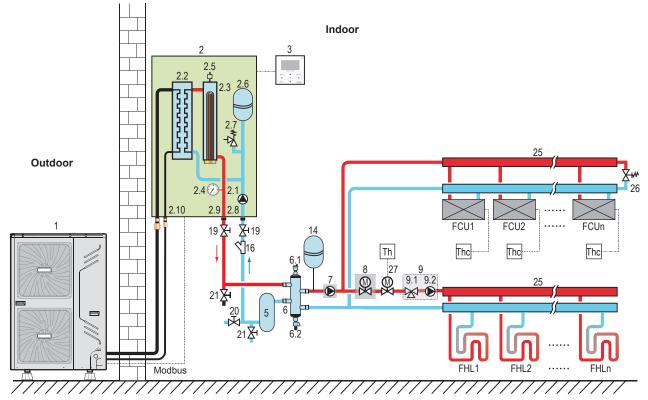
The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

■ Pump operation and space heating/cooling

According to the season, the unit will switch to "heating mode" or "cooling mode" according to the temperature detected by the room thermostat. Wiring of room thermostat should follow method A as described in "Connection for other components/For room thermostat".

When space heating/cooling is requested by the room thermostat (24), the circulating pump(2.1) and (7) will start operating and the unit (1) and (2) will switch to "heating mode"/"cooling mode". The unit (1) and (2) will start operating to achieve the target leaving cold/hot water temperature. In case of cooling mode, the motorized 2-way valve (8) will close as to prevent cold water running through the floor heating loops (FHL).

CAUTION


- Make sure to connect the thermostat wires to the correct terminals (see "For room thermostat" on "Connection for other components") and to configure the ROOM THERMOSTAT in the user interface correctly (see "Field settings/ROOM THERMOSTAT")
- Wiring of the 2-way valve (8) is different for a NC (normal closed) valve and a NO (normal open) valve! Make sure to connect to the correct terminal numbers as detailed on the wiring diagram.

The ON/OFF setting of the heating/cooling operation can't be done on the user interface.

Domestic water heating and DHW pipe pump operating
 Domestic water heating and DHW pipe pump operating are as described in "Application 2".

4.4 Application 4

Space cooling and heating application without a room thermostat connected to the indoor unit, but with a heating only room thermostat controlling the floor heating and a heating/cooling thermostat controlling the fan coil units. Heating is provided through floor heating loops and fan coil units. Cooling is provided through the fan coil units only.

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)

- 5 Buffer tank (field supply)
- 6 Balance tank (field supply)
- 6.1 Air vent valve
- 6.2 Drain valve
- 7 P_o: Outside circulating pump (field supply)
- 8 SV2: Motorized 2-way valve (field supply)
- 9 Mixing station (field supply)
- 9.1 Mixing valve
- 9.2 P_c: Mixing pump
- 14 Expansion vessel (field supply)
- 16 Filter (accessory)
- 17 Non return valve (field supply)

- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 25 Collector (field supply)
- 26 Bypass volve (field supply)
- 27 Motorized 2-way valve for activation of thermostat (field supply)
- SP Solar plate (field supply)
- Th Heating only room thermostat for floor heating loop (field supply)

The Heating/Cooling room thermostat for fan coil unit (field supply)

FHL1...n Floor heating loop (field supply)

FCU1...n Fan coil unit (field supply)

NOTE

The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

Pump operation

With no room thermostat connected to the indoor unit(2), the circulated pump (2.1) and (7) will operate as long as the unit is on for space heating/cooling.

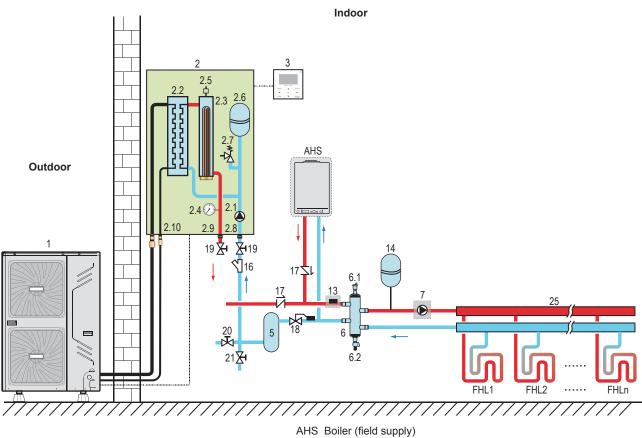
NOTE

Details on pump configuration can be found under "Setting the pump speed".

Space heating and cooling

According to the season, the user will select cooling or heating through the user interface. The unit (1) and (2) will operate in cooling mode or heating mode to achieve the target water flow temperature. In heating mode, the 2-way valve(8) is open. Hot water is provided to both the fan coil units and the floor heating loops. In cooling mode, the 2-way valve(8) is closed to prevent cold water running through the floor heating loops(FHL).

CAUTION


When several loops in the system by remotely controlled valves, it might be required to install a by-pass valve (26) to avoid the flow switch safety device from being activated. See also "Application 2".

Wiring of the 2-way valve(8) is different for a NC (normal closed) valve and a NO (normal open) valve, the NO valve is unavailable to this unit! Make sure to connect to the correct terminal numbers as detailed on the wiring diagram.

The ON/OFF setting of the heating/cooling operation is done by the user interface.

4.5 Application 5

- Space heating with an additional boiler (alternating operation).
- Space heating application by either the unit or by an additional boiler connected in the system.
- The unit controlled contact (also called "permission signal for the additional boiler") is determined by the outdoor temperature (thermistor located at the outdoor unit). See "Field settings/OTHER HEATING SOURCE"
- Bivalent operation is possible for both space heating operation and domestic water heating operation.
- If the additional boiler only provide heating for space heating, the boiler must be intergrated in the piping work and in the field wiring according to the illustration of application A.
- If the additional boiler is also provide heating for domestic hot water, the boiler must be intergrated in the piping work and in the field wiring according to the illustration of application B.
- If the temperature of water from the indoor unit is not high enough, Application C can be used. An additional 3-way value should be installed, if the temperature of water from indoor unit is high enough, then the boiler will be bypassed; when the temperature is not high enough, the 3-way value will act and the water from indoor unit will flow through the boiler and be heated.

Alto boiler (lield su

Be sure that the boiler and the integration of the boiler in the system is in accordance with relevant local laws and regulations.

CAUTION

Application A

Outdoor

Outdoor

AHS

FHL1

FHL2

FHL2

FHL1

FHL2

FHL2

FHL1

FHL2

FHL1

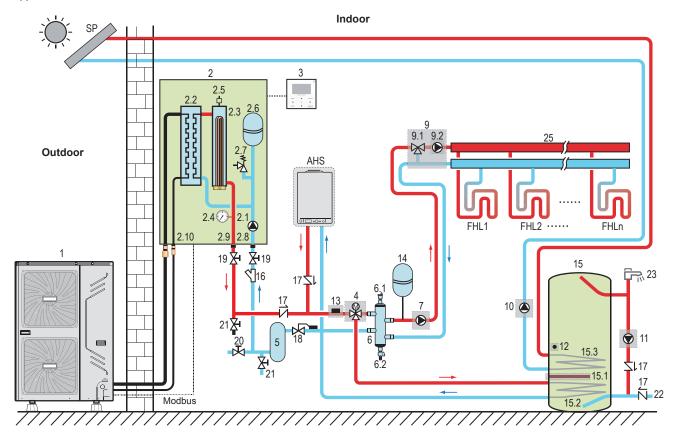
FHL2

FHL1

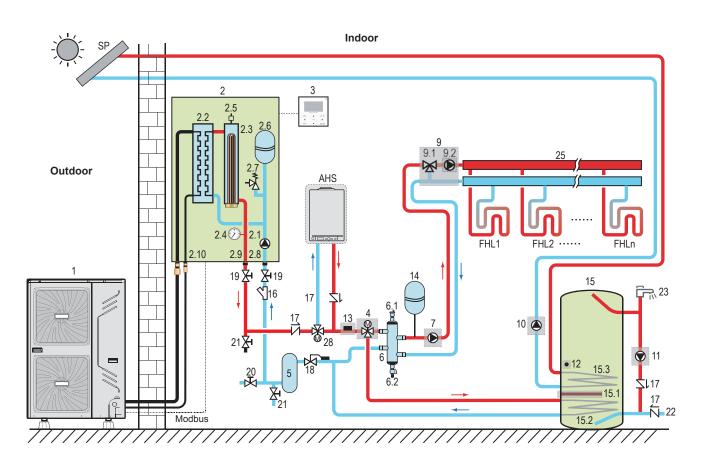
FHL2

FHL1

FHL2


FHL2

FHL2


FHL1

FHL2

Application B

Application C is selected, the control cable connect to boiler should also connect to the 3-way valve(28)

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)
- 4 SV1: Motorized 3-way valve (field supply)
- 5 Buffer tank (field supply)

- 6 Balance tank (field supply)
- 6.1 Air vent valve
- 6.2 Drain valve
- 7 P_o: Outside circulating pump (field supply)
- 9 Mixing station (field supply)
- 9.1 Mixing valve
- 9.2 P c: Mixing pump
- 10 P_s: Solar pump (field supply)
- 11 P_d: DHW pipe pump (field supply)
- 12 T5: Domestic water tank temperature sensor (accessory)
- T1B: Confluent outlet water temperature sensor (optional)
- 14 Expansion vessel (field supply)
- 15 Domestic hot water tank (field supply)
- 15.1 TBH: Domestic hot water tank booster heater

15.2 Coil heat exchanger for heat pump

15.3 Coil heat exchanger for solar

16 Filter (accessory)

- 17 Non return valve (field supply)
- 18 Aquastat valve (field supply)
- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 22 Tap water inlet pipe (field supply)
- 23 Hot water tap (field supply)
- 25 Collector (field supply)
- 28 Motorized 3-way valve (field supply)
- SP Solar plate (field supply)
- FHL1...n Floor heating loop (field supply)
- AHS Additional heating source such as boiler (field supply)

NOTE

The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

Operation

When heating required, either the unit or the boiler starts operating, depending on the outdoor temperature (refer to "Field setting/OTHER HEATING SOURCE").

- As the outdoor temperature is measured via the outdoor unit ambient temperature sensor, make sure to install the outdoor unit in the shade, so that it is not influenced by the sun.
- Frequent switching may cause corrosion of the boiler in an early stage. Contact the manufacturer of the boiler.
- During heating operation of the unit, the unit will operate so as to achieve the target water flow temperature as set on the user interface. When weather dependent operation is active, the water temperature is determined automatically depending on the outdoor temperature.
- During heating operation of the boiler, the boiler will operate so as to achieve the target water flow temperature as set on the user interface.
- Never set the target water flow temperature set point on the user interface above (60°C).

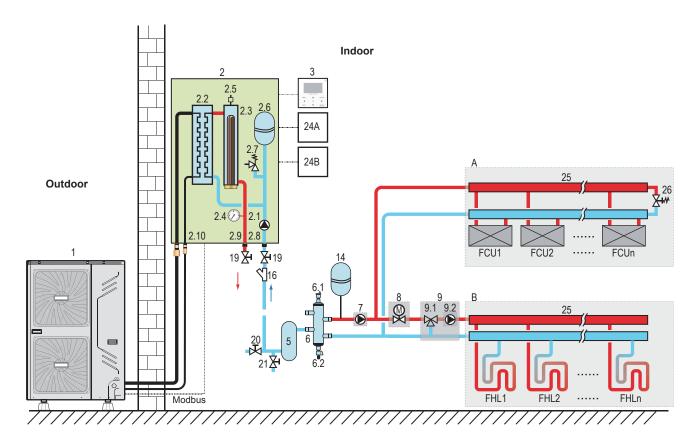
The domestic water heating and DHW pipe pump operationg are as described in "Application 2".

NOTE

Make sure to configure the FOR SERVICEMAN in the user interface correctly. Refer to "field settings/OTHER HEATING SOURCE".

CAUTION

- Make sure that return water to the heat exchanger never exceeds 60°C. Never put the target water flow temperature set point on the user interface above 60°C.
- Make sure that the non-return valves (field supply) are correctly installed in the system.
- The supplier shall not be held liable for any damage resulting from failure to observe this rule.


4.6 Application 6

- Space heating with two room thermostat application through floor heating loops and fan coil units. The floor heating loops and fan coil units require different operating water temperatures.
- The floor heating loops require a lower water temperature in heating mode compared to fan coil units. To achive these two set points, a mixing station is used to adapt the water temperature according to requirements of the floor heating loops. The fan coil units are directly connected to the unit water circuit and the floor heating loops after the mixing station. The control of this mixing station is not done by the unit.
- The operation and configuration of the field water circuit is the responsibility of the installer.
- We only offers a dual set point control function. By this function two set points can be generated. Depending on the required water temperature (floor heating loops and/or fan coil units are required) first set point or second set point can be activated see the **field setting /ROOM THERMOSTAT**.

NOTE

The wiring of room thermostat 24A(for fan coil units) and 24B(for floor heating loops) should follow 'method C' as described in "Connection for other components/For room thermostat". When start signal is detected in "H" port, the MAIN side will turn on, the operation mode and target temperature can be set in the user interface. When stop signal is detected, the MAIN side will turn off. When start signal is detected in "C port, the ROOM side will turn on, the operation mode and target temperature decided by the climate related curves (if curves not selected, curve 4 will be the default one). When stop signal is detected, the ROOM side will turn off. When stop signal detected in both "H" and "C" port, the unit will turn off.

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP_I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections

- 3 User interface (accessory)
- 5 Buffer tank (field supply)
- 6 Balance tank (field supply)
- 6.1 Air vent valve
- 6.2 Drain valve
- 7 P_o: Outside circulating pump (field supply)
- 8 SV2: Motorized 2-way valve (field supply)
- 9 Mixing pump (field supply)
- 9.1 Mixing valve
- 9.2 P_c: Mixing pump
- 14 Expansion vessel (field supply)
- 16 Filter (accessory)

- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 24A Room thermostat for zone A (field supply)
- 24B Room thermostat for zone B (field supply)
- 25 Collector (field supply)
- 26 Bypass valve (field supply)
 - A Zone A
 - B Zone B

FHL1...n Floor heating loop (field supply)

FCU1...n Fan coil unit (field supply)

NOTE

The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

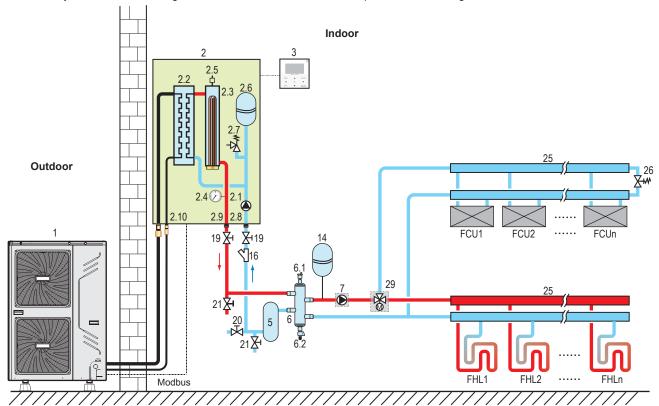
The advantage of the dual set point control is that the heat pump will/can operate at the lowest required water flow temperature when only floor heating is required. Higher water flow temperatures are only required in case fan coil units are operating. This results in a better performance of the heat pump.

Pump operation and space heating

The pump (2.1) and (7) will operate when there is a request for heating from A and/or B. The unit(1) and (2) will start operating to achieve the target water flow temperature. The target leaving water temperature depends on which room thermostat is requesting heating.

When the room temperature of both zones is above the thermostat set point, the units and pumps will stop operating.

NOTE


Make sure to configure the room thermostat installation on the user interface correctly. Refer to "FOR SERVICEMAN/ROOM THERMOSTAT".

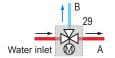
NOTE

- It is the installers' responsibility to ensure that no unwanted situations can occur (e.g. extremely high temperature water going towards floor heating loops, etc.)
- The supplier does not offer any type of mixing station. Dual set point control only provides the possibility to use two set points.
- When only zone A requests heating, zone B will be fed with water at a temperature equal to the first set point. This can lead to unwanted heating in zone B.
- When only zone B requests heating, the mixing station will be fed with water at a temperature equal to the second set point. Depending on the control of the mixing station, the floor heating loop can still receive water at a temperature equal to the set point of the mixing station.
- Be aware that the actual water temperature through the floor heating loops depends on the control and setting of the mixing station.

4.7 Application 7

Space cooling and heating application without a room thermostat connected to the unit, but the temperature sensor attached in the user interface is used to control the ON/OFF of the unit. Heating is provided through floor heating loops. Cooling is provided through the fan coil units. A 3-way valve is used to change the direction of water flow when the operation mode changed.

- 1 Outdoor unit
- 2 Indoor unit
- 2.1 PUMP_I (built-in circulating pump)
- 2.2 Plate heat exchanger (air to water heat exchanger)
- 2.3 IBH (built-in backup heater)
- 2.4 Manometer (built-in)
- 2.5 Air vent valve (built-in)
- 2.6 Expansion vessel (built-in)
- 2.7 Safety valve (built-in pressure relief)
- 2.8 Water inlet
- 2.9 Water outlet
- 2.10 Refrigerant connections
- 3 User interface (accessory)
- 5 Buffer tank (field supply)


- 6 Balance tank (field supply)
 - 6.1 Air vent valve
 - 6.2 Drain valve
- 7 P_o Outside circulating pump (field supply)
- 14 Expansion vessel (field supply)
- 16 Filter (accessory)
- 19 Shut-off valve (field supply)
- 20 Fill valve (field supply)
- 21 Drain valve (field supply)
- 25 Collector (field supply)
- 26 Bypass valve (field supply)
- 29 Motorized 3-way valve (field supply)
- FHL1...n Floor heating loop (field supply)
- FCU1...n Fan coil unit (field supply)

NOTE

The volume of the buffer tank(5) should be larger than 30L. The drain valve(21) should be installed at the lowest position of the water circulating system.

The wiring of the 3-way valve (29) should follow the wiring of 2-way valve SV2 (refer to "Connection for other components/ For 2-way valve SV2").

NOTE

In normal condition, port A should be opened, while signal sent to the 3-way valve (29), port A will be closed and port B will be opened. When in cool mode, ON signal will sent from outdoor unit to the 3-way valve (29), the cold water will flow through port inlet to port B, and port B should connect to the fan coil units. While in heating mode, the hot water will flow through port inlet to port A, and port A should connect to the floor heating loops. In this way, all the water from the unit will flow through the floor heating loops and thus ensure better performance of the floor heating.

As the temperature sensor is used to detect the room temperature, the user interface(3) should be placed in the room where floor heating loops and fan coil units is installed. Correct configuration should be applied in the user interface (refer to "Field settings/ TEMP. TYPE SETTING"). The target room temperature can be set on the main page of user interface, the target outlet water temperature will be calculated from climate related curves, the unit will turn off when the room temperature reaches the target temperature.

5. INSTALLATION OF THE INDOOR UNIT

CAUTION

The indoor unit should be installed in a water proof place, or the safety of the unit and the operator cannot be ensured.

5.1 Selecting an installation location

- The indoor unit is to be wall mounted in an indoor location that meets the following requirements:
- The installation location is frost-free.
- The space around the unit is adequate for serving, see
- The space around the unit allows for sufficient air circulation.
- There is a provision for condensate drain and pressure relief valve blow-off.

CAUTION

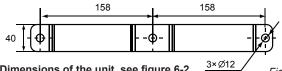
When the unit running in the cooling mode, Condensate may drop from the water inlet and water outlet pipes. Please make sure the dropping condensate will not result in damage of your furniture and other devices.

- The installation surface is a flat and vertical non-combustible wall, capable of supporting the operation weight of the unit.
- There is no danger of fire due to leakage of inflammable gas.
- All piping lengths and distance have been taken into consideration.

Table. 5-1

Requirement	Volume
Maximum allowable piping length between the 3-way valve SV1 and the indoor unit (only for installations with domestic hot water tank)	3m
Maximum allowable piping length between the domestic hot water tank and the indoor unit (only for installations with domestic hot water tank). The temperature sensor cable supplied with the indoor unit is 10 m in length.	8m
Maximum allowable piping length between the T1B and the indoor unit. The temperature sensor a cable of T1B supplied with the indoor unit is 10m in length.	8m

The equipment is not intended for use in a potentially explosive atmosphere.



NOTE

If the installation is equipped with a domestic hot water tank (optional), please refer to the domestic hot water installation manual.

5.2 Dimensions and service space

Unit of measurement: mm Dimensions of the wall bracket:

Dimensions of the unit, see figure 6-2.

Fig.5-1

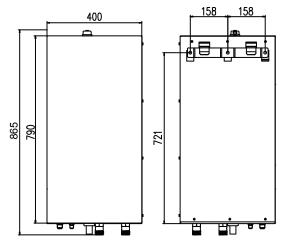


Fig.5-2

NO.	NAME
1	Refrigerant gas connection 5/8"-14UNF
2	Refrigerant liquid connection 3/8"-14UNF
3	Drainage 25
4	Water Inlet R1"
5	Water Outlet R1"

Required service space, see figure 5-3.

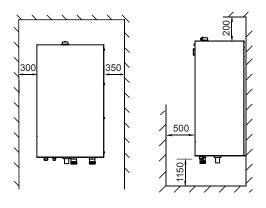


Fig.5-3

5.3 Inspecting, handling and unpacking the unit

- The indoor unit is packed in a box.
- At delivery, the unit must be checked and any damage must be reported immediately to the carrier claims agent.
- Check if all indoor unit accessories are enclosed.
- Bring the unit as close as possible to the final installation position in its original package in order to prevent damage during transport.
- The indoor unit weights approximately 60kg and should be lifted by two persons using the two lifting bars provided.

WARNING

Do not grasp the control box or piping to lift the unit! Two lifting bars are provided to lift the unit.

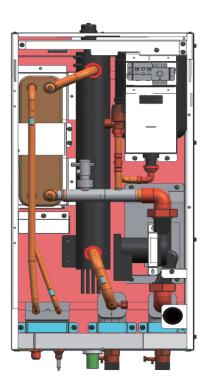
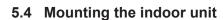



Fig.5-4

WARNING

The weight of the indoor unit is approximately 60kg. Two persons are required to mount the unit.

- Fix the wall mounting bracket to the wall using appropriate plugs and screws.
- Make sure the wall mounting bracket is completely level.
 When the unit is not installed level, air might get trapped in the water circuit resulting in malfunctioning of the unit.
- Pay special attention to this when installing an indoor unit to prevent overflow of the drain pan
- Hang the indoor unit on the wall mounting bracket.
- Fix the indoor unit at the bottom inside using appropriate plugs and screws. To do so, the unit is equipped with 2 holes at the bottom outer edges of the frame.

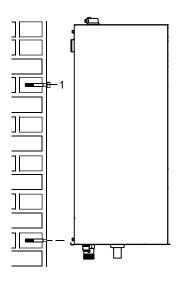


Fig.5-5

5.5 Refrigerant pipework

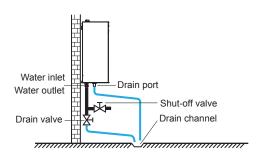
For all guidelines, instructions and specifications regarding refrigerant pipework between the indoor unit and outdoor unit, please refer to the outdoor unit installation and owner's manual. The location of the gas pipe and liquid pipe on the indoor unit is shown under "Indoor unit components".

Table. 5-2

Refrigerant piping specifications	Indoor unit	Outdoor unit	
Gas pipe connection	φ15.9mm (5/8 inch)	φ15.9mm (5/8 inch)	
Liquid pipe connectio	φ9.52mm (3/8 inch)	φ9.52mm (3/8 inch)	

WARNING

When connecting the refrigerant pipes, always use two wrenches/spanners for tightening or loosening nuts! Failure to do so can result in damaged piping connections and leaks.


5.6 Water pipework

All piping lengths and distances have been taken into consideration. Refer to table. 5-1.

NOTE

- If the installation is equipped with a domestic hot water tank (optional), please refer to the domestic hot water tank Installation & owner's manual.
- If no glycol is in the system, in case of a power supply failure or pump operating failure, drain the system (as suggested in the figure below).

When water is at standstill inside the system, freezing is very likely to happen and damaging the system in the process.

Checking the water circuit

The units are equipped with a water inlet and water outlet for connection to a water circuit. This circuit must be provided by a licensed technician and must comply with local laws and regulations.

The unit is only to be used in a closed water system.

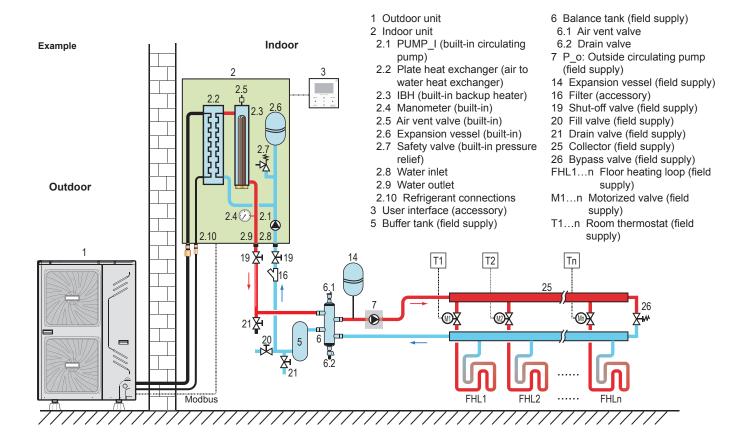
Application in an open water circuit can lead to excessive corrosion of the water piping.

Before continuing the installation of the unit, check the following points:

- The maximum water pressure = 3 bar(g).
- The maximum water temperature is 70°C according to safety device setting.
- Always use materials which are compatible with the water used in the system and with the materials used in the unit.
- Take care that the components installed in the field piping can withstand the water pressure and temperature.
- Drain taps must be provided at all low points of the system to permit complete drainage of the circuit during maintenance.
- Air vents must be provided at all high points of the system. The vents should be located at points which are easily accessible for servicing. An automatic air purge is provided inside the unit. Check that this air purge valve is not tightened too much so that automatic release of air in the water circuit remains possible.

Checking the water volume and expansion vessel pre-pressure

The unit is equipped with an expansion vessel of 5 litre which has a default pre-pressure of 1.5 bar(g).


To assure proper operation of the unit, the pre-pressure of the expansion vessel might need to be adjusted and the minimum and maximum water volume must be checked.

 Check that the total water volume in the installation, excluding the internal water volume of the unit, is 20L minimum. Refer to "TECHNICAL SPECIFICATIONS" to know the internal water volume of the unit.

NOTE

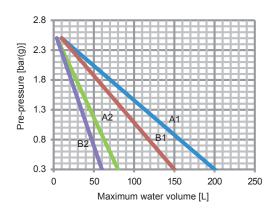
- In most applications this minimum water volume will have a satisfying result.
- In critical processes or in rooms with a high heat load though, extra water volume might be required.
- When circulation in each space heating loop is controlled by remotely controlled valves, it is important that this minimum water volume is kept even if all the valves are closed.

- Using the table below, determine if the expansion vessel prepressure requires adjustment.
- Using the table and instructions below, determine if the total water volume in the installation is below the maximum allowed water volume

Installation height difference ^(a)	Water volume ≤160 L	>160 L
≤7 m	No pre-pressure adjustment required.	Actions required: • pre-pressure must be decreased, calculate according to "Calculating the pre-pressure of the expansion vessel" • check if the water volume is lower than maximum allowed water volume (use graph below)
>7 m	Actions required: • pre-pressure must be increased, calculate according to "Calculating the prepressure of the expansion vessel" • check if the water volume is lower than maximum allowed water volume (use graph below)	Expansion vessel of the unit too small for the installation.

(a) Installation height difference: height difference (m) between the highest point of the water circuit and the unit. If the unit is located at the highest point of the installation, the installation height is considered 0 m.

Calculating the pre-pressure of the expansion vessel


The pre-pressure (Pg) to be set depends on the maximum installation height difference (H) and is calculated as below: Pg = H(m)/10 + 0.3 bar(g)

Checking the maximum allowed water volume

To determine the maximum allowed water volume in the entire circuit, proceed as follows:

- Determine for the calculated pre-pressure (Pg) the corresponding maximum water volume using the graph below.
- Check that the total water volume in the entire water circuit is lower than this value.

If this is not the case, the expansion vessel inside the unit is too small for the installation.

pre-pressure = pre-pressure maximum water volume = maximum water volume

- A1 System without glycol for KIT KHP BI 16 VN and KIT KHP BI 16 TN units
- A2 System without glycol for KIT KHP BI 8 VN unit
- B1 System with 25% propylene glycol for KIT KHP BI 16 VN and KIT KHP BI 16 TN units
- B2 System with 25% propylene glycol for KIT KHP BI 8 VN unit (Refer to "Caution: "Use of glycol")

Example 1

The unit is installed 5 m below the highest point in the water circuit.

The total water volume in the water circuit is 100 L. In this example, no action or adjustment is required.

Example 2

The unit is installed at the highest point in the water circuit. The total water volume in the water circuit is 180 L.

Result:

- Since 180 L is higher than 160 L, the pre-pressure must be decreased (see table above).
- The required pre-pressure is:
- Pg = H(m)/10+0.3 = 0/10+0.3 = 0.3 bar(g)
- The corresponding maximum water volume can be read from the graph: approximately 210 L.
- Since the total water volume (180 L) is below the maximum water volume (210 L), the expansion vessel suffices for the installation.

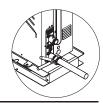
Setting the pre-pressure of the expansion vessel

When it is required to change the default pre-pressure of the expansion vessel [1 bar(g)], keep in mind the following guidelines:

- Use only dry nitrogen to set the expansion vessel pre-pressure.
- Inappropriate setting of the expansion vessel pre-pressure will lead to malfunction of the system. Therefore, the pre-pressure should only be adjusted by a licensed installer.

Connecting the water circuit

Water connections must be made in accordance with the outlook diagram delivered with the unit, respecting the water in- and outlet.


Be careful not to deform the unit piping by using excessive force when connecting the piping. Deformation of the piping can cause the unit to malfunction.

If air, moisture or dust gets in the water circuit, problems may occur. Therefore, always take into account the following when connecting the water circuit:

- Use clean pipes only.
- Hold the pipe end downwards when removing burrs
- Cover the pipe end when inserting it through a wall so that no dust and dirt enter.
- Use a good thread sealant for the sealing of the connections. The sealing must be able to withstand the pressures and temperatures of the system.
- When using non-brass metallic piping,make sure to insulate both materials from each other to prevent galvanic corrosion.

 Because brass is a soft material, use appropriate tooling for onnecting the water circuit

Inappropriate tooling will cause damage to the pipes.

NOTE

The unit is only to be used in a closed water system. Application in an open water circuit can lead to excessive corrosion of the water piping:

- Never use Zn-coated parts in the water circuit. Excessive corrosion of these parts may occur as copper piping is used in the unit's internal water circuit.
- When using a 3-way valve in the water circuit.Preferably choose a ball type 3-way valve to guarantee full separation between domestic hot water and floor heating water circuit.
- When using a 3-way valve or a 2-way valve in the water circuit. The recommended maximum changeover time of the valve should be less than 60 seconds.

Protecting the water circuit against freezing

Frost can cause damage to the hydraulic system. As this unit is installed outdoors and thus the hydraulic system is exposed to freezing temperatures, care must be taken to prevent freezing of the system.

All hydraulic parts are insulated to reduce heat loss. Insulation must be foreseen on the field piping.

The unit is already equipped with several features to prevent freezing.

■ The software contains special functions using heat pump to protect the complete system against freezing.

When the temperature of the water flow in the system drop to a certain value, the software will take action to heat the water, either by the heat pump or the electric heating tap, or backup heater.

The freeze protection function will turn off only when the temperature increase to a certain value.

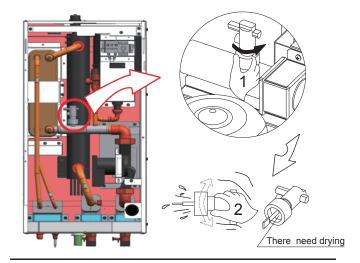
However in case of power failure, above mentioned features can not protect the unit from freezing.

If power failure can happen at times the unit is unattended, the supplier recommends adding glycol to the water system. Refer to Caution: "Use of glycol".

Depending on the expected lowest outdoor temperature, make sure the water system is filled with a weight concentration of glycol as mentioned in the table below.

When glycol added to the system, the performance of the unit will be affected, the correction factor of the unit capacity/flow rate and pressure drop of the system listed in the table below:

Freezing point (°C)						
	0	-5	-10	-15	-20	-25
Percentage of ethylene glycol in weight						
	0	12%	20%	28%	35%	40%
cPf	1	0.98	0.97	0.965	0.96	0.955
cQ	1	1.02	1.04	1.075	1.11	1.14
cdp	1	1.07	1.11	1.18	1.22	1.24


cPf: correction factor for unit heating capacity

cQ: correction factor for flow rate

cdp: correction factor for system pressure drop

If no glycol added to the system, water must be drain out when power supply failure.

Besides, water may enter into the flow switch, which can't be drain out and may freezing when the temperature is low enough, so you should remove the flow switch and dry it, then you can install it into the unit

NOTE

- Counterclockwise rotation, remove the flow switch.
- Drying the flow switch completly.

WARNING

(a) ETHYLENE GLYCOL IS TOXIC

The concentrations mentioned in the table above will not prevent the medium from freezing, but prevent the hydraulics from bursting.

CAUTION

Use of glycol

- Use of glycol for installations with a domestic hot water tank:
 - Only propylene glycol having a toxicity rating or class of 1, as listed in "Clinical Toxicology of Commercial Products, 5th edition" may be used.

The maximum allowed water volume is then reduced according to the figure "Maximum allowed water volume" Refer to the Installation.

■ In case of over-pressure when using glycol, be sure to connect the safety valve to a drain pan in order to recover the glycol.

Corrosion of the system due to presence of glycol

Uninhibited glycol will turn acidic under the influence of oxygen. This process is accelerated by presence of copper and at higher temperatures. The acidic uninhibited glycol attacks metal surfaces and forms galvanic corrosion cells that cause severe damage to the system.

It is therefore of extreme importance:

- That the water treatment is correctly executed by a qualified water specialist:
- That a glycol with corrosion inhibitors is selected to counteract acids formed by the oxidation of glycols;
- That in case of an installation with a domestic hot water tank, only the use of propylene glycol is allowed. In other installations the use of ethylene glycol is permitted as well;
- That no automotive glycol is used because their corrosion inhibitors have a limited lifetime and contain silicates which can foul or plug the system;
- That galvanized pipingis not used in glycol systems since its presence may lead to the precipitation of certain components in the glycol's corrosion inhibitor;
- That it has to be made sure the glycol is compatible with the used materials in the system.

NOTE

- Be aware of the hygroscopic property of glycol: it absorbs moisture from its environment.
- Leaving the cap off the glycol container causes the concentration of water to increase. The glycol concentration is then lower than assumed. And in consequence, freezing can happen after all.
- Preventive actions must be taken to ensure minimal exposure of the glycol to air.

Also refer to "Pre-operation checks/Checks before initial start-up"

5.7 Filling water

- 1. Connect the water supply to the fill value and open the value.
- 2. Make sure the automatic air purge valve is open (at least 2 turns).
- Fill with water until the manometer indicates a pressure of approximately 2.0 bar(g). Remove air in the circuit as much as possible using the air purge valves. Air present in the water circuit might cause malfunctioning of the backup heater.

NOTE

During filling, it might not be possible to remove all air in the system. Remaining air will be removed through the automatic air purge valves during first operating hours of the system. Additional filling with water afterwards might be required.

- The water pressure indicated on the manometer will vary depending on the water temperature (higher pressure at higher water temperature).
- However, at all times water pressure should remain above 0.3 bar(g) to avoid air entering the circuit.
- The unit might dispose some excessive water through the pressure relief valve.
- Water quality must be according to "Safe Drinking water Act "

5.8 Piping insulation

The complete water circuit including all piping, must be insulated to prevent condensation during cooling operation and reduction of the heating and cooling capacity as well as prevention of freezing of the outside water piping during winter time. The thickness of the sealing materials must be at least 13 mm with $\lambda = 0.039$ W/mK in order to prevent freezing on the outside water piping.

If the temperature is higher than 30°C and the humidity is higher than RH 80%, then the thickness of the sealing materials should be at least 20 mm in order to avoid condensation on the surface of the sealing.

5.9 Field wiring

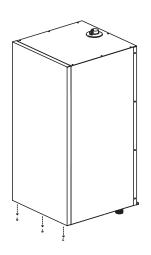
WARNING

- A main switch or other means for disconnection, having a contact separation in all poles, must be incorporated in the fixed wiring in accordance with relevant local laws and regulations.
- Switch off the power supply before making any connections.
- Use only copper wires.
- Never squeeze bundled cables and make sure that it does not come in contact with the piping and sharp edges
 Make sure no external pressure is applied to the terminal connections
- All field wiring and components must be installed by a licensed electrician and must comply with relevant local laws and regulations.
- The field wiring must be carried out in accordance with the wiring diagram supplied with the unit and the instructions given below.
- Be sure to use a dedicated power supply. Never use a power supply shared by another appliance.
- Be sure to establish a ground. Do not ground the unit to a utility pipe, surge absorber, or telephone ground. Incomplete ground may cause electrical shock.
- Be sure to install a ground fault circuit interrupter (30 mA).
 Failure to do so may cause electrical shock.
- Be sure to install the required fuses or circuit breakers.

5.9.1 Precautions on electrical wiring work

- Fix cables so that cables do not make contact with the pipes (especially on high pressure side).
- Secure the electrical wiring with cable ties as shown in figure so that it does not come in contact with the piping, particularly on the high-pressure side.
- Make sure no external pressure is applied to the terminal connectors.
- When installing the ground fault circuit interrupter make sure that it is compatible with the inverter (resistant to high frequency electrical noise) to avoid unnecessary opening of the ground fault circuit interrupter

NOTE


The ground fault circuit interrupter must be a high- speed type breaker of 30 mA (<0.1 s).

As this unit is equipped with an inverter, installing a phase advancing capacitor not only will deteriorate power factor improvement effect, but also may cause capacitor abnormal heating accident due to high-frequency waves. Therefore, never install a phase advancing capacitor.

5.9.2 Overview

The illustration below gives an overview of the required field wiring between several parts of the installation. Refer also to "TYPICAL APPLICATION EXAMPLES".

- The front flap on the indoor unit cover gives access to the manometer and user interface.
- The indoor unit cover can be removed by removing the 6 side screws and unhitching the cover.

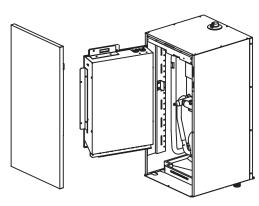
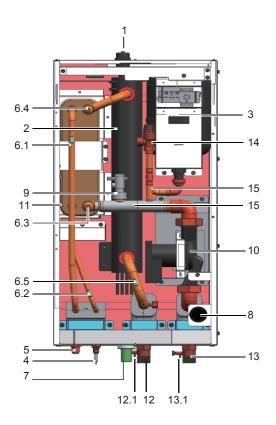


Fig.5-1

CAUTION

Make sure to fix the cover with the screws and nylon washers when installing the cover (screws are delivered as accessory).

Parts inside the unit can be hot.


■ To gain access to the control box components – e.g. to connect the field wiring – the control box service panel can be removed. Thereto, loosen the front screws and unhitch the control box service panel.

CAUTION

Switch off all power supply – i.e. outdoor unit power supply ,indoor unit power supply, electric heater and additional heater power supply before removing the control box service panel.

5.9.2.2 Indoor unit components

1. Air vent valve

Remaining air in the water circuit will be automatically removed via the air vent valve.

2. Backup heater

The backup heater consists of an electrical heating element that will provide additional heating capacity to the water circuit if the heating capacity of the unit is insufficient due to low outdoor temperatures, it also protects the external water piping from freezing during cold periods

- 3. Expansion vessel (1.32 gallons (5 L))
- 4. Refrigerant liquid connection
- 5. Refrigerant gas connection
- 6. temperature sensors

Four temperature sensors determine the water and refrigerant temperature at various points in the water circuit

- 6.1-T2B; 6.2-T2; 6.3-TW in; 6.4-TW out; 6.5-T1
- 7. Drain port
- 8. Manometer

The manometer allows readout of the water pressure in the water circuit

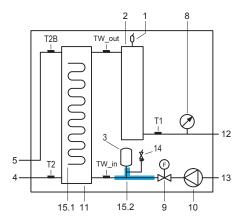
9. Flow switch

The flow switch checks the flow in the water circuit and protects the heat exchanger against freezing and the pump against damage.

10. Pump

The pump circulates the water in the water circuit.

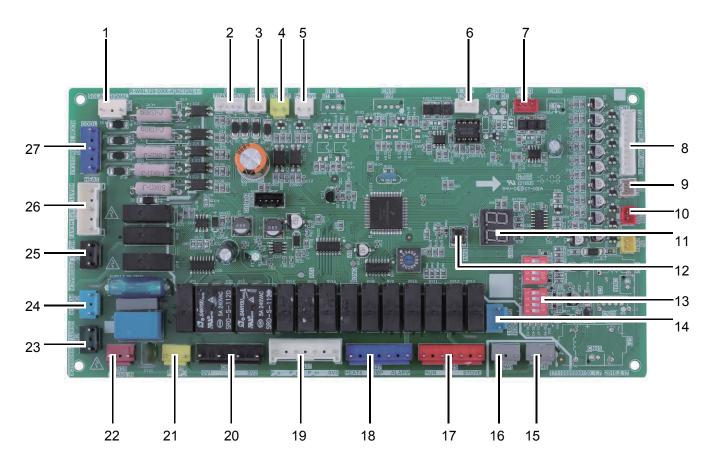
11. Heat exchanger


The manometer allows readout of the water pressure in the water circuit.

- 12. Water outlet connection
- 12.1 Air vent valve
- 13. Water inlet connection
- 13.1 Drain valve
- 14. Safty valve

The pressure relief valve prevents excessive water pressure in the water circuit by opening at 43.5psi(g)/3bar(g) and discharging some water.

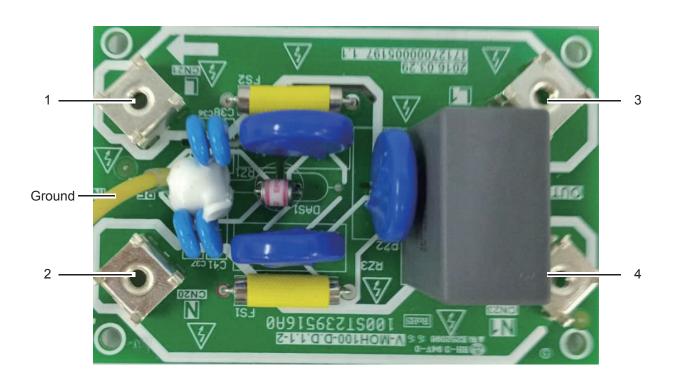
15. Electrical heating tape(15.1-15.2)


Functional diagram of indoor unit components

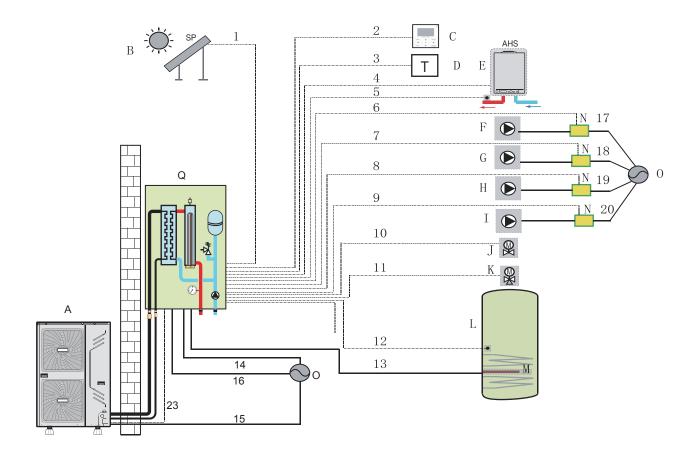
- 1 Air vent value
- 2 Backup heater vessel with backup heater
- 3 Expansion vessel
- 4 Refrigerant liquid connection
- 5 Refrigerant gas connection
- 8 Manometer
- 9 Flow switch
- 10 Circulated Pump
- 11 Heat exchanger
- 12 Water outlet connection
- 13 Water inlet connection
- 14 Safety valve
- 15.1 Electrical heating tape
- 15.2 Electrical heating tape

Temperature sensors: Tw_in, Tw_out, T1, T2, T2B

5.9.2.3 Switch box main components



- 1 Input port for solar energy(CN5)
- 2 Output port for transformer(CN4)
- 3 Power supply port for user interface(CN36)
- 4 Port for remote switch(CN12)
- 5 Port for flow switch (CN8)
- 6 Communicate port between outdoor unit and door PCB(CN14)
- 7 Communicate port between indoor PCB and user interface(CN19)
- 8 Port for temperature sensors(Twout, Twin, T1, T2, T2B)(CN6)
- 9 Port for temperature sensor(CN13)(T5,Sanitary water temp.)
- 10 Port for temperature sensor(T1B, the final outlet temp.)(CN15)
- 11 Digital displays(DIS1)
- 12 Check button(SW4)
- 13 DIP switch(S1,S2)
- 14 output port for deforst(CN34)
- 15 Port for anti-freeze eletric heating tape (internal)(CN40)


- 16 Port for anti-freeze eletric heating tape (internal)(CN41)
- 17 Output port for external heating source / operation output port(CN25)
- 18 Port for anti-freeze eletric heating tape(external) /port for solar energy pump/output port for remote alarm(CN27)
- 19 Port for external circulted pump/pipe pump/mix pump/2-way valve SV2(CN37)
- 20 Port for SV1(3-way valve) and SV3(CN24)
- 21 Port for internal pump(CN28)
- 22 Input port for transformer(CN20)
- 23 Feedback port for temperature switch(CN1)
- 24 Port for power supply(CN21)
- 25 Feedback port for external temp. switch(shorted in default)(CN2)
- 26 Control port backup heater/booster heater(CN22)
- 27 Control port for room thermostat(CN3)

- 1 IBH contactor KM1
- 2 IBH contactor KM2
- 3 IBH contactor KM3
- 4 TBH contactor KM4
- 5 IBH circuit breaker CB1
- 6 TBH circuit breaker CB2

- 1 Power supply L
- 2 Power supply N
- 3 Power supply for main control board L
- 4 Power supply for main control board N
- 5 Ground

- A Outdoor unit
- B Solar energy kit (field supply)
- C User interface
- D Room thermostat (field supply)
- E Boiler (field supply)
- F P_s: Solar pump (field supply)
- G P_c: Mixing pump (field supply)
- H P_o: Outside circulate pump (field supply)
- I P_d: DHW pump (field supply)
- J SV2: 2-way valve (field supply)
- K SV1: 3-way valve for domestic hot water tank (field supply)
- L Domestic hot water tank
- M Booster heater
- N Contactor
- O Power supply
- Q Indoor unit

Item	Description	AC/DC	Required number of conductors	Maximum running current
1	Solar energy kit signal cable	AC	2	200mA
2	User interface cable	AC	5	200mA
3	Room thermostat cable	AC	2 or 3	200mA(a)
4	Boiler control cable	1	2	200mA
5	Thermistor cable	DC	2	200mA
6	Solar pump control pump	1	2	200mA
7	Mixing pump control cable	1	2	200mA
8	Outside circulation pump control cable	AC	2	200mA(a)
9	DHW pump control cable	AC	2	200mA(a)
10	2-way valve control cable	AC	2	200mA(a)
11	3-way valve control cable	AC	2 or 3	200mA(a)
12	Thermistor cable	DC	2	(b)
13	Booster heater control cable	AC	2	200mA(a)
14	Power supply cable for booster heater	AC	2	200mA(a)
15	Power supply cable for unit	AC	2+GND (1-phase) 3+GND (3-phase)	31A (1-phase) 15A (3-phase)
16	Power supply cable for backup heater	AC	2+GND (1-phase) 3+GND (3-phase)	14A (1-phase) 6A (3-phase)
17	Power supply cable for solar pump	AC	2	200mA(a)
18	Power supply cable for mix- ing pump	AC	2	200mA(a)
19	Power supply cable for outside circulation pump	AC	2	200mA(a)
20	Power supply cable for DHW pump	AC	2	200mA(a)
21	Thermistor cable	AC	2	200mA(a)
22	Backup heater control cable	AC	2	200mA(a)

Equipment must be grounded.

All high-voltage external loads, if it is metal or a grounded port, must be grounded.

All external loads current is needed less than 1.5A, if the loads current is greater than 1.5A, Single external load current is needed less than 0.2A, if the single load current is greater than 0.2A, the load must be controlled through AC contactor.

⁽a) Minimum cable section AWG18 (0.75 $\rm mm^2)$ (b) The temperature sensor cable are delivered with the unit

Field wiring guidelines

Most field wiring on the unit is to be made on the terminal block inside the switch box. To gain access to the terminal block, remove the switch box service panel.

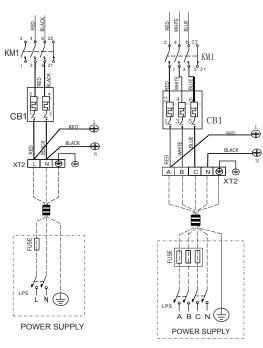
WARNING

Switch off all power supply – i.e. unit power supply and backup heater and domestic hot water tank power supply (if applicable) – before removing the switch box service panel.

- Fix all cables using cable ties.
- A dedicated power circuit is required for the backup heater.
- Installations equipped with a domestic hot water tank (optional), require a dedicated power circuit for the booster heater.
 Please refer to the domestic hot water tank Installation & owner's manual.
 - Secure the wiring in the order shown below.
- Lay the electrical wiring so that the front cover does not rise up when doing wiring work and attach the front cover securely (see figure).
- Follow the electric wiring diagram for electrical wiring works (the electric wiring diagrams are located on the rear side of cover.
- Form the wires and fix the cover firmly so that the cover may be fit in properly.

Precautions on wiring of power supply

- Use a round crimp-style terminal for connection to the power supply terminal board. In case it cannot be used due to unavoidable reasons, be sure to observe the following instruction.
- Do not connect wires of different gauge to the same power supply terminal. (Looseness in the connection may cause overheating.)
- When connecting wires of the same gauge, connect them according to the below figure.



- Use the correct screwdriver to tighten the terminal screws.
 Small screwdrivers can damage the screw head and prevent appropriate tightening.
- Over-tightening the terminal screws can damage the screws.
- Attach a ground fault circuit interrupter and fuse to the power supply line.
- In wiring, make certain that prescribed wires are used, carry out complete connections, and fix the wires so that outside forces are not applied to the terminals.

5.9.3 Specifications of standard wiring components

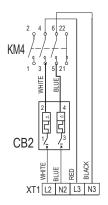
Equipment main Power Supply Wiring

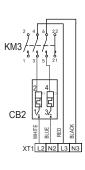
	1-phase	3-phase	
Maximum overcurrent protector (MOP)	32	25	
Wiring size	Wiring size must comply with the applicable local laws and regulations		

(a) Stated values are maximum values (see electrical data for exact values).

NOTE

The ground fault circuit interrupter must be a high-speed type breaker of 30 mA (<0.1 s). Flexible cord must meet 60245IEC(H05VV-F) standards.


5.9.3.1 Connection of the backup heater power supply

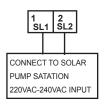

Power circuit and cable requirements

- Be sure to use a dedicated power circuit for the backup heater. Never use a power circuit shared by another appliance.
- Use one and same dedicated power supply for the unit, backup heater and booster heater (domestic hot water tank).

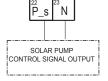
This power circuit must be protected with the required safety devices according to local laws and regulations.

Select the power cable in accordance with relevant local laws and regulations. For the maximum running current of the backup heater, refer to the table below.

	Backup heater capacity								
	3kW 1-phase	3-phase							
Backup heater nominal voltage	230V	400V							
Minimum circuit amps (MCA)	14.3	14.3							
Maximum overcurrent protector (MOP)	32A	32A							
Flexible cord must meet 60245IEC(H05VV-F) standards.									

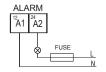


NOTE


The ground fault circuit interrupter must be a high-speed type breaker of 30 mA (<0.1 s).

5.9.3.2 Connection for other components

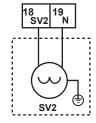
- Electrical parts of the hydraulic compartment: The XT4/XT5 contains terminals for solar energy, remote alarm, 2-way valve, 3-way valve, pump, booster heater and external heating source. The parts wiring is illustrated below:
- Equipment must be grounded. All high-voltage external load, if it is metal or a grounded port, must be grounded.
- All external load current is needed less than 0.2A, if the single load current is greater than 0.2A, the load must be controlled through AC contactor.
- "STV1" "STV2", "A1" "A2", "R1" "R1" and "DTF1" "DTF2" wiring terminal ports provide only the switch signal. TBH electric heating power is less than 3000W.


Voltage	220VAC-240VAC
Maximum running current	0.2A
Wiring size	0.75mm ²

Voltage	220VAC-240VAC
Maximum running current	0.2A
Wiring size	0.75mm ²

For remote alarm:

REMOTE ALARM

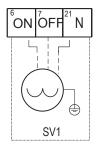


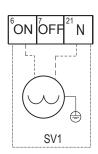
Voltage	Passive signal port				
Maximum running current	0.2A				
Wiring size	0.75mm ²				

Procedure

- 1. Connect the cable to the appropriate terminals as shown on the
- Fix the cable with cable ties to the cable tie mountings to ensure stress relief.

For 2-way valve SV2:


Voltage	220VAC-240VAC
Maximum running current	0.2A
Wiring size	0.75mm ²


NOTE: Only a normal closing valve is available for this unit

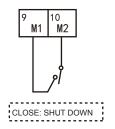
Procedures

- Connect the valve cable to the appropriate terminals as shown in
- Fix the cable with cable ties to the cable tie mountings to ensure stress relief

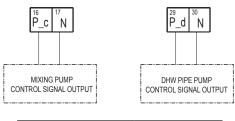
For 3-way valve SV1

Voltage	220VAC-240VAC
Maximum running current	0.2A
Wiring size	0.75mm ²

NOTE: Wiring of the 3-way valve is different for NC (normal close) and NO (normal open). Before wiring, read the Installation & Owner's manual for the 3-way valve carefully and install the valve as should in the picture. Make sure to connect it to the correct terminal numbers.


Voltage	220VAC-240VAC
Maximum running current	0.2A
Wiring size	0.75mm ²

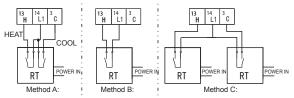
Procedure

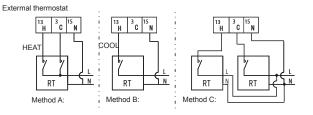

- 1. Connect the cable to the appropriate terminals as shown in the
- Fix the cable with cable ties to the cable tie mountings to ensure stress relief.

For remote shutdown:

SWITCH SIGNAL INPUT

For DHW pipe pump P_d and mixing pump P_c:


Voltage	220VAC-240VAC				
Maximum running current	0.2A				
Wiring size	0.75mm ²				


Procedure

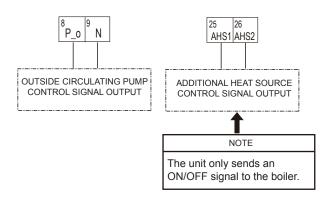
- 1. Connect the cable to the appropriate terminals as shown in the
- Fix the cable with cable ties to the cable tie mountings to ensure stress relief

For room thermostat:

There are three methods for connecting the thermostat cable (as described in the picture above) and it depends on the application. If method "A" is selected, the space operation mode can be selected on the room thermostat. If method "B" is selected, the room thermostat is used as a switch. When the room temperature reaches the target temperature, the units will turn off, while the space operation mode can only be selected on the user interface.

If method "C" is selected, application 6 (refer to "Application 6") should be applied. Any room thermostat sent ON signal to the unit will the unit turn on. Both room thermostat sent OFF signals to the unit will the unit turn off. The operation mode can be set in the user interface.

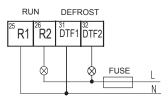
When the room thermostat is installed the ON/OFF of the unit is decided by the temperature detected by the thermostat, the user interface can only set the target temperature.


NOTE:

- 1. The wiring of the thermostat should correspond to the settings of the user interface. Refer to "Field setting/Room Thermostat".
- 2. Power supply of machine and room thermostat must be connected to the same Neutral Line and (A) Phase Line.

Procedure

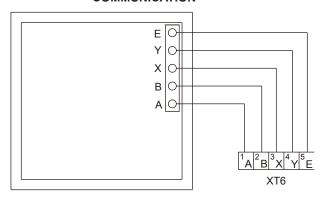
- 1. Connect the cable to the appropriate terminals as shown in the
- 2. Fix the cable with cable ties to the cable tie mountings to ensure stress relief

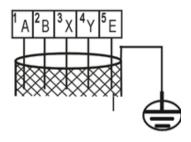

For boiler and outside circulating pump P o:

Voltage	220VAC-240VAC			
Maximum running current	0.2A			
Wiring size	0.75mm ²			

■ External Wiring of Operation/ Fault

- The terminal will be conducted when the unit is running, and will be disconnected when the unit is turned off or stood by.
- The terminal 25 \26 and 31\30 will be conducted when there is a running fault, and be disconnected when the unit is running correctly.
- The connection is described.




Procedure

- Connect the cable to the appropriate terminals as shown in the nicture.
- Fix the cable with cable ties to the cable tie mountings to ensure stress relief

For user interface:

COMMUNICATION

"PLEASE USE SHIELDED WIRE AND EARTH THE WIRE."

Wire type	5 wire shielded cable
Wire section	AWG18-AWG16(0.75~1.25mm2)
Maximum wire length	150m

This equipment supports MODBUS RTU communication protocol.

As described above, during wiring, port A in the unit terminal XT6 corresponds to port A in the user interface. Port B corresponds to port B. Port X corresponds to port X. Port Y corresponds to port Y, and port E corresponds to port E...

Procedure

- 1. Remove the rear part of the user interface.
- Connect the cable to the appropriate terminals as shown in the picture
- 3. Reattach the rear part of the user interface

6 START-UP AND CONFIGURATION

The unit should be configured by the installer to match the installation environment (outdoor climate, installed options, etc.) and user expertise.

It is important that all information in this chapter is read sequentially by the installer and that the system is configured as applicable.

6.1 Climate related curves

The climate related curves can be selected in the user interface (refer to the operation manual, **6.2.2 Weather Temperature set**, if ECO mode is enabled, please refer to the operation manual **6.2.3 ECO Mode**).

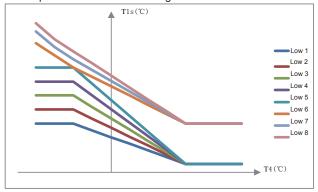
Once the curve is selected, the target outlet water temperature is determined by the outdoor temperature. In each mode, you can select one curve from eight curves in the user interface. And it designed for three applications. Floor heating Low temperature / Floor heating High temperature and Radiator. For some new building with good insulation, you can adopt floor heating Low temperature curves. And set corresponding curves in controller. If your building insulation is not so well, you can choose floor heating high temperature curves. If you need relace a boiler for radiator, Please choose radiator curves.

The relationship between outdoor temperature(T4/ $^{\circ}$ C) and target outlet water temperature(T1s/ $^{\circ}$ C) is described in the table and picture in the next page.

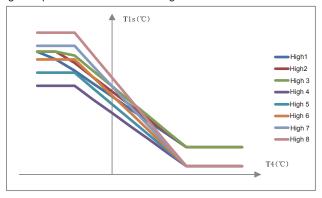
The selection of the low/high temperature curve can be done in the user interface. In cool mode refer to 10.7 Field setting/COOL control / How to set the COOL mode. In heat mode refer to 10.7 Field setting/HEAT control/How to set the HEAT mode.

Temperature curves for heating mode

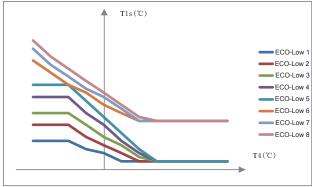
Application	T1s	Outdoor Temperatures T4										
Дриосион	Curve number	-20	-15	-10	-5	0	5	10	15	20	25	35
	LOW 1	30	30	30	28	27	25	23	22	20	20	20
	LOW 2	34	34	34	31	29	27	25	22	20	20	20
Floor Heating Low Temperature	LOW 3	37	37	37	34	31	29	26	23	20	20	20
Tomporataro	LOW 4	41	41	41	37	34	30	27	23	20	20	20
	LOW 5	44	44	44	40	36	32	28	24	20	20	20
	LOW 6	50	47	44	42	39	37	35	32	30	30	30
	LOW 7	53	49	46	43	41	38	35	33	30	30	30
Floor Heating High	LOW 8	55	51	48	45	42	39	36	33	30	30	30
Temperature	HIGH 1	55	53	50	47	43	40	37	33	30	30	30
	HIGH 2	55	55	52	48	45	41	37	34	30	30	30
	HIGH 3	55	55	54	50	46	42	38	34	30	30	30
	HIGH 4	46	46	46	43	39	36	32	29	25	25	25
	HIGH 5	50	50	50	45	41	37	33	29	25	25	25
Radiator	HIGH 6	53	53	53	48	44	39	34	30	25	25	25
	HIGH 7	57	57	57	51	46	41	36	30	25	25	25
	HIGH 8	60	60	60	54	48	43	37	31	25	25	25

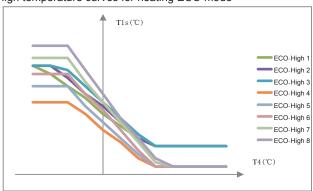

Temperature curves for heating ECO mode

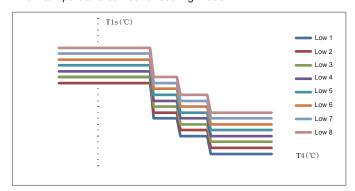
Acciliandes	T1s	Outdoor TemperaturesT4										
Application	Curve number	20	-15	-10	-5	0	5	10	15	20	25	35
	ECO-LOW 1	25	25	25	23	22	20	20	20	20	20	20
	ECO-LOW 2	29	29	29	26	24	22	20	20	20	20	20
Floor Heating Low Temperature	ECO-LOW 3	32	32	32	29	26	24	21	20	20	20	20
Temperature	ECO-LOW 4	36	36	36	32	29	25	22	20	20	20	20
	ECO-LOW 5	39	39	39	35	31	27	23	20	20	20	20
	ECO-LOW 6	45	42	39	37	34	32	30	30	30	30	30
	ECO-LOW 7	48	44	41	38	36	33	30	30	30	30	30
Floor Heating High	ECO-LOW 8	50	46	43	40	37	34	31	30	30	30	30
Temperature	ECO-HIGH 1	50	48	45	42	38	35	32	30	30	30	30
	ECO-HIGH 2	50	50	47	43	40	36	32	30	30	30	30
	ECO-HIGH 3	50	50	49	45	41	37	33	30	30	30	30
	ECO-HIGH 4	41	41	41	38	34	31	27	25	25	25	25
	ECO-HIGH 5	45	45	45	40	36	32	28	25	25	25	25
Radiator	ECO-HIGH 6	48	48	48	43	39	34	29	25	25	25	25
	ECO-HIGH 7	52	52	52	46	41	36	31	26	25	25	25
	ECO-HIGH 8	55	55	55	49	43	37	32	27	25	25	25

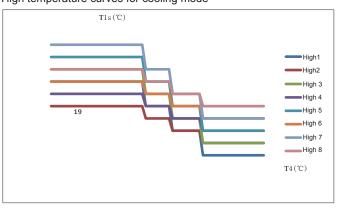

Temperature curves for Cooling mode

Application	T1s	Outdoor Temperatures T4				
	Curve number	-5~14	15~21	22~29	30~46	
Fan coil	LOW 1	18	13	10	7	
	LOW 2	19	14	11	8	
	LOW 3	20	15	12	9	
	LOW 4	21	16	13	10	
	LOW 5	22	17	14	11	
	LOW 6	23	18	15	12	
	LOW 7	24	19	16	13	
	LOW 8	25	21	18	14	
Radiator	HIGH 1	20	18	18	18	
	HIGH 2	21	19	18	18	
	HIGH 3	22	20	18	18	
	HIGH 4	23	21	18	18	
	HIGH 5	24	22	20	18	
	HIGH 6	25	23	21	19	
	HIGH 7	25	24	22	20	
	HIGH 8	25	25	23	21	


Low temperature curves for heating mode

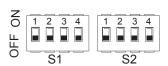

High temperature curves for heating mode


Low temperature curves for heating ECO mode


High temperature curves for heating ECO mode

Low temperature curves for cooling mode

High temperature curves for cooling mode


6.2 DIP switch settings overview

DIP switch 26 is located on the switch box PCB (see "Indoor unit components/Switch box main components") and allows configuration of additional heating source temperature sensor installation, the second inner backup heater installition, etc.

WARNING

Switch off the power supply before opening the switch box service panel and making any changes to the DIP switch settings.

DIP switch	Description	ON
S1-1	Selection of refrigerant pipe length	≥60% of Max. Piping Length(*)
S1-2	Backup heater outlet temperature T1 temperature sensor installation	Not installed
S1-3	The first inner backup heater IBH1 installation	Not installed
S1-4	The second inner backup heater IBH2 installation	Not installed
S2-1	Additional heating source outlet temperature T1B sensor installation	Installed
S2-2	1	1
S2-3	1	1
S2-4	1	1

(*) Max. piping length: refer to the manual of outdoor unit.

6.3 Initial start-up at low outdoor ambient temperatures

During initial start-up and when water temperature is low, it is important that the water is heated gradually. Failure to do so may result in cracking of concrete floors due to rapid temperature change.

Please contact the responsible cast concrete building contractor for further details.

To do so, the lowest water flow set temperature can be decreased to a value between 25°C and 35°C by adjusting the FOR SERVICEMAN

Refer to "FOR SERVICEMAN/special function/preheating for floor".

6.4 Pre-operation checks

Checks before initial start-up

CAUTION

Switch off the power supply before making any connections.

After the installation of the unit, check the following before switching on the circuit breaker:

- Field wiring Make sure that the field wiring between local supply panel and unit and valves (when applicable), unit and room thermostat (when applicable), unit and domestic hot water tank, and unit and backup heater box have been carried out according to the instructions described in the chapter "Field wiring", according to the wiring diagrams and according to local laws and regulations.
- Fuses, circuit breakers, or protection devices Check that the
 fuses or the locally installed protection devices are of the size and
 type specified in the chapter "TECHNICAL SPECIFICATIONS".
 Make sure that neither a fuse nor a protection device has been
 bypassed.
- Backup heater circuit breaker Do not forget to turn on the backup heater circuit breaker in the switchbox (it depends on the backup heater type). Refer to the wiring diagram.
- Booster heater circuit breaker Do not forget to turn on the booster heater circuit breaker (applies only to units with optional domestic hot water tank installed).
- 5. Ground wiring

Make sure that the ground wires have been connected properly and that the ground terminals are tightened.

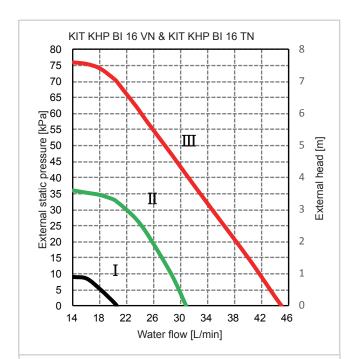
- 6. Internal wiring
 - Visually check the switch box on loose connections or damaged electrical components.
- 7. Fixation
 - Check that the unit is properly fixed, to avoid abnormal noises and vibrations when starting up the unit.
- 8. Damaged equipment
 - Check the inside of the unit on damaged components or squeezed pipes.
- 9. Refrigerant leak
 - Check the inside of the unit on refrigerant leakage. If there is a refrigerant leak, call your local dealer.
- 10 Power supply voltage
 - Check the power supply voltage on the local supply panel. The voltage must correspond to the voltage on the identification label of the unit.
- 11. Air purge valve
 - Make sure the air purge valve is open (at least 2 turns).
- 12. Shut-off valves
 - Make sure that the shut-off valves are fully open

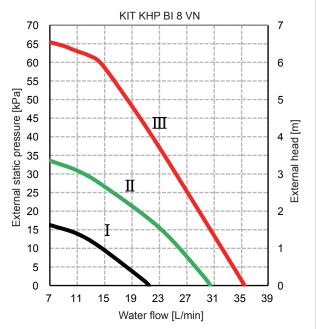
Operating the system with closed valves will damage the circulated pump!

6.5 Powering up the unit

When power supply to the unit is turned on, "1%~99%" is displayed on the user interface during its initialisation. During this process the user interface cannot be operated.

6.6 Setting the pump speed


The pump speed can be selected by adjust the red nob on the pump, the place that notch point to indicate the speed of the pump.


The default setting is the highest speed (III). If the water flow in the system is too high, the speed can be set o low speed (I).

The available external static pressure in function of the water flow is shown in the graph below.

Constant speed I II III

Pump LED diagnose and remedy

The pump have an LED operating status display, this makes it easy for the technician to search for the cause of a fault in the heating system.

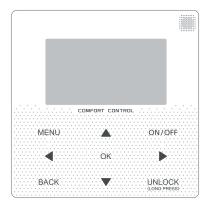
- 1. If the LED display lights up continuously green, it means the pump is running normally.
- If the LED display is flashing green, it means the pump is running venting routine. The pump runs during 10min in venting function, afterwards the installer has to adjust the targeted performance.
- 3. If the LED is flashing green/red, it means the pump has stopped operating due to an external reason. The pump will restart by itself after the abnormal situation disappeared. The probably reason to cause the problem is that the pump undervoltage or overvoltage (U<160V or U>280V), you should check the voltage supply. Another reason is the module overheating, and then you should check the water and ambient temperature.
- 4. If the LED is flashing red, it means the pump has stopped operating, some serious fault has happened(e.g. pump blocked), the pump cannot restart itself due to a permanent failure and the pump should be changed.
- 5. If the LED is not light up, it means no power supply to the pump, maybe the pump is not connected to power supply, you should check the cable connection. If the pump is still running, it means the LED is damaged. Or the electronics are damaged and the pump should be changed.

Failure diagnosis at the moment of first installation

- In case nothing is displayed on the user interface, check for any of the following abnormalities before you can diagnose possible malfunction codes.
 - 1) Disconnection or wiring error (between power supply and unit and between unit and user interface).
 - 2) The fuse on the PCB may have run out.
- If the user interface shows "E8"or"E0" as an error code, there is a possibility that air exist in the system, or the water volume in the system is less than the minmum volume.
- If the error code "E2" is displayed on the user interface, check for the wiring between user interface and unit.

More error code and failure cause can be found in "Error codes".

6.7 Field settings

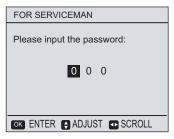

The unit shall be configured by the installer to match the installation environment (outdoor climate, installed options, etc.) and user demand. A number of field settings are available. These settings are accessible and programmable through "FOR SERVICEMAN" in user interface.

Procedure

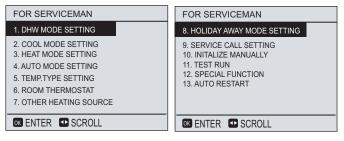
To change one or more field settings, proceed as follows.

Temperature values displayed on the digital controller (user interface) are in ${}^{\circ}\text{C}$

Keys	Function		
MENU	Go to the menu structure (on the home page)		
◄► ▼ ▲	Navigate the cursor on the display Navigate in the menu structure Adjust settings		
ON/OFF	Turn on/off the space heating/cooling operation mode or DHW mode Turn on/or off functions in the menu structure		
BACK	Come back to the up level		
UNLOCK	Long press for unlock /lock the controller Unlock /lock some functions such as "DHW temperature adjusting "		
ок	 Go to the next step when programming a schedule in the menu structure; and confirm a selection to enter in the submenu of the menu structure. 		


About FOR SERVICEMAN

"FOR SERVICEMAN" is designed for the installer to set the parameter.


- 1. Setting the composition of equipment.
- 2. Setting the parameter.

How to go to FOR SERVICEMAN

Go to MENU> FOR SERVICEMAN. Press OK

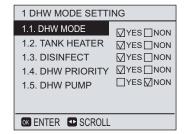
The password is 666. Use ◀ ► to navigate and use ▼ ▲ to adjust the numerical value. Press OK. The following page is displayed:

Use \P \blacktriangle to scroll and use "ok" to enter submenu for setting the parameters.

6.8 DHW control

About DHW mode

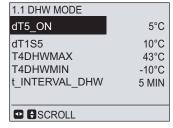
DHWidomestic hot water


DHW MODE SETTING typically consists of the following:

- 1. DHW MODE: enable or disable the DHW mode
- 2. TANK HEATER: set whether the booster heater is available or not
- 3. DISINFECT:set the parameters for disinfection
- 4. DHW PRIORITY:set the priority between domestic hot water heating and space operation
- 5 DHW PUMP: set the parameters for DHW pump operation. The functions above apply only to installations with a domestic hot water

How to set the DHW mode

To determine whether the DHW mode is effective.


Go to MENU> FOR SERVICEMAN> DHW MODE SETTING. Press OK. The following page is displayed:

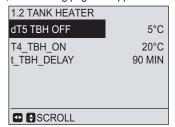
Use ◀ ▶ to scroll and OK for enter. When the cursor is on ☐ YES, Press OK to set the DHW MODE as effective.


When the cursor is on $\ \square$ NON,press OK to set the DHW MODE as ineffective.

1. Go to MENU> FOR SERVICEMAN>DHW MODE SETTING>1.1
DHW MODE

Use \blacktriangleleft \blacktriangleright and \blacktriangledown \blacktriangle to scroll and adjust parameters. Use BACK to exit.

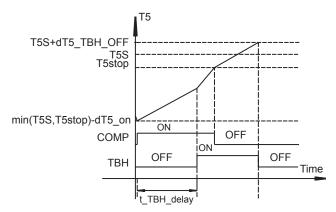
 $\mbox{dT5_ON}$ is the temperature difference for starting the heat pump, the picture below illustrates the $\mbox{dT5_ON}$ function.


T5S is the target temperature for domestic hot water. T5 is the actual temperature of domestic hot water. When T5 drops to a certain temperature (T5≤T5S-dT5_ON) the heat pump will be available. dT1S5 is the correct value for the target outlet water temperature (T1S=T5+dT1S5).

T4DHWMAX is the maximum ambient temperature that the heat pump can operate at for domestic water heating. The unit will not operate if the ambient temperature goes above it in DHW mode. T4DHWMIN is the minimum ambient temperature that the heat pump can operate for domestic water heating. The heat pump will turn off if the ambient temperature drops below it in water heating mode. The relationship between operation of the unit and ambient temperature can be illustrated in the picture below:

T_INTERVAL_DHW is the start time interval of the compressor in DHW mode. When the compressor stops running, the next time the compressor turns on it should be T_INTERVAL_DHW plus one minute later at least.

2 If tank heater (booster heater) is avaliable, Go to FOR SERVICEMAN >DHW MODE SETTING>1.2 TANK HEATER and select "Yes", when "OK" pressed, the following page will appear:

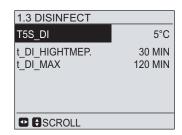


Use ◀ ▶ and ▼ ▲ to scroll and adjust parameters. Use BACK to exit.

dT5_TBH_OFF is the temperature difference between T5 and T5S that turns the booster heater off. The booster heater will turn off (T5≥T5S+dT_TBH_OFF) when the heat pump malfunctions.

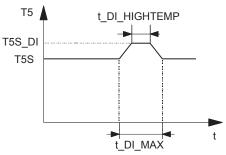
T4_TBH_ON is the temperature only when the ambient temperature is lower than its parameter and the booster heater will be available. t_TBH_DELAY is the time that the compressor has run before starting the booster heater (if T5<min (T5S,T5stop)).

The operation of the unit during DHW mode described in the picture below:



In the picture, T5stop is a parameter related to ambient temperature, which cannot be changed in the user interface. When T5≥T5stop, the heat pump will turn off.

Note: the booster heater and backup heater can't operate simultaneously, if the booster heater has been on, the backup heater will be off.


If the booster heater is unavailable (1.2 TANK HEATER NON is selected), the dT5_ON cannot be adjusted and is fixed at 2.

3. To enable disinfect function,Go to MENU> FOR SERVICEMAN> DHW MODE SETTING>1.3 DISINFECT and select "YES", when "OK" pressed, the following page will appear.

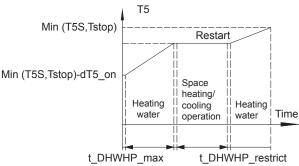
T5S_DI is the target temperature of water in the domestic hot water tank in the DISINFECT function.

- t DI HIGHTEMP is the time that the hot water will last.
- t_DI_MAX is the time that disinfection will last. The change of domestic water temperature is described in the picture below:

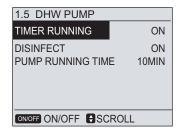
Be aware that the domestic hot water temperature at the hot water tap will be equal to the value selected in FOR SERVICEMAN "T5S_DI" after a disinfection operation.

WARNING

If this high domestic hot water temperature can be a potential risk for human injuries, a mixing valve (field supply) should be installed at the hot water outlet connection of the domestic hot water tank. This mixing valve will ensure that the hot water temperature at the hot water tap never rises above a set maximum value. This maximum allowable hot water temperature shall be selected according to local laws and regulations.


4. To set the priority between domestic water heating and space operation Go to SERVICEMAN>DHW MODE SETTING>1.4DHW PRIORITY:

The function of the DHW PRIORITY is used to set the operation priority between domestic water heating and space (heating/cooling) operation. You can use \blacktriangleleft \blacktriangleright and \blacktriangledown \blacktriangle to scroll and adjust parameters. Using BACK to exit.


- t_DHWHP_MAX is the maximum continuous working period of the heat pump in DHW PRIORITY mode.
- $t_DHWHP_RESTRICT$ is the operation time for the space heating/ cooling operation.

If DHW PRIORITY is enabled, the operation of the unit is described in the picture below:

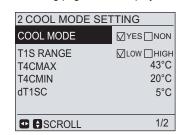
If NON is selected in the DHW PRIORITY mode, when it is available and the space heating/cooling is OFF, the heat pump will heat the domestic water as required. If space heating/cooling is ON, the domestic water will be heated by booster heater(if booster heater is available).

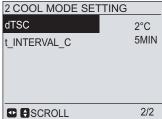
5 If the DHW pump(P_d) is avaliable, Go to FOR SERVICEMAN >DHW MODE SETTING>1.5DHW PUMP and select "YES", when "OK" pressed, the following page will appear,You can use ◀▶ and ▼▲ to scroll and adjust parameters. Use BACK to exit.

When the **TIMER RUNNING** is **ON**, the DHW pump will run as timed and keeps running for an certain time (as defined in **PUMP RUNNING TIME**), this can ensure the temperature of water in the system are uniform.

When **DISINFECT** is **ON**, the DHW pump will operate when the unit is in disinfect mode and T5≥T5S_DI-2. Pump run time is **PUMP RUNNING TIME**+5min.

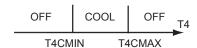
6.9 COOL MODE SETTING

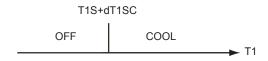

About COOL MODE SETTING


COOL MODE SETTING typically consists of the following:

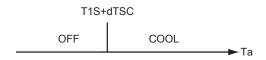
- 1. COOL MODE: Setting the COOL mode effective or non-effective
- 2. T1S RANGE: Selecting the range of target outlet water temperature
- 3. T4CMAX: Setting the maximum ambient operation temperature
- 4. T4CMIN: Setting the minimum ambient operating temperature
- 5. dT1SC: Setting the temperature difference for starting the heat pump

How to set the COOL mode


To determine whether the COOL mode is effective, go to MENU> FOR SERVICEMAN> COOL MODE SETTING. Press OK. The following page will be displayed:



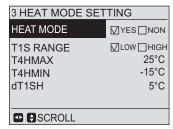
When the cursor is on COOL MODE, Use ◀► to select YES or NON. Then press OK to enable or disable the cool mode. When the cursor is on T1S RANGE. Use ◀► to select the range of outlet water temperature. When LOW is selected, the minimum target temperature is 5°C. If climate-related curve function (corresponds to "weather temperature set" in the user interface) is enabled, the curve selected is low temperature curve. When HIGH is selected, the minimum target temperature is 18°C, if climate-related curve function (corresponds to "weather temperature set" in the user interface) is enabled, the curve selected is high temperature curve.


When the cursor is on T4CMAX, T4CMIN, dT1SC, dTSC or t_INTERVAL_C, Use ◀▶ and ▼▲ to scroll and adjust the parameter T4CMAX is the maximum ambient temperature in COOL mode. The unit cannot work if the ambient temperature is higher. T4CMIN is the minimum ambient operating temperature in COOL mode. The unit will turn off if the ambient temperature drops below it. The relationship between the operation of the unit and ambient temperature is shown in the picture below:

dT1SC is the temperature difference between T1 (actual outlet water temperature) and T1S (target outlet water temperature) for starting the unit in cool mode. Only when T1 is high enough will the unit turn on, and will turn off if T1 drops to a certain value. See the diagram below:

dTSC is the temperature difference between Ta (actual room temperature) and TS (target room temperature) To start the unit when ROOM TEMP is enabled in TEMP.TYPE SETTING (refer to 10.7 Field setting/TEMP.TYPE SETTING). Only when the Ta is high enough will the unit turn on, and the unit will turn off if the Ta drops to a certain value. Only when the ROOM TEMP is enabled will this function be available. See picture below:

6.10 HEAT MODE SETTING


About HEAT MODE SETTING

HEAT MODE SETTING typically consists of the following:

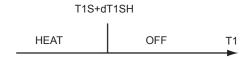
- 1. HEAT MODE: Enable or disable the HEAT mode
- 2. T1S RANGE: Selecting the range of target outlet water temperature
- 3. T4HMAX: Setting the maximum ambient operating temperature
- 4. T4HMIN: Setting the minimum operating ambient operating temperature
- 5. dTISH: Setting the temperature difference for starting the unit
- 6. t_INTERVAL_H: Setting the compressor start time interval

How to set the Heat mode

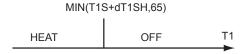
To determine whether the HEAT mode is effective, go to MENU> FOR SERVICEMAN> HEAT MODE SETTING. Press OK. The following page be displayed:

When the cursor is on HEAT MODE, Use ◀▶ to scroll to YES or NON and press OK to enable or disable the heat mode. When the cursor is on the T1S RANGE, use ◀▶ to scroll to YES or NON and press OK to select the range of outlet water temperature. When LOW is selected, the maximum target temperature is 55°C. If climate-related curve function (corresponds to "weather temperature set" in the user interface) is enabled, the curve selected is low temperature curve. When HIGH is selected, the maximum target temperature is 60°C. If climate-related curve function (corresponds to "weather temperature set" in the user interface) is enabled, the curve selected is high temperature curve.

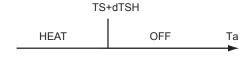
When the cursor is on T4HMAX, T4HMIN, dT1SH, dTSH or t_INTERVAL_H, Use ◀▶ and ▼▲ to scroll and adjust the parameter.


T4HMAX is the maximum ambient operating temperature for heat mode. The unit will not work if the ambient temperature is higher.

T4HMIN is the minimum ambient operating temperature for heat mode. The unit will turn off if the ambient temperature is lower. The relationship between the operation of the unit and ambient temperature can be seen in the picture below:



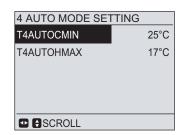
dT1SH is the temperature difference between T1 and T1S for starting the unit in heat mode.


When the target outlet water temperature T1S<47, the unit will turn on or off as described below:

When the target outlet water temperature T1S≥47, the unit will on or off as described below:

dTSH is the temperature difference between Ta (Ta is the room temperature) and TS for starting the unit when ROOM TEMP is enabled in TEMP.TYPE SETTING (refer to 10.7 Field setting/TEMP. TYPE SETTING). Only when Ta drops to a certain value will the unit turn on, and the unit will turn off if the Ta high enough. See diagram below. (only when ROOM TEMP is enabled will this function be available).

t_INTERVAL_H is the compressor start time interval in heat mode. When the compressor stops running, the next time that the compressor turns on should be "t_INTERVAL_H" and one minute later at least.


6.11 AUTO MODE SETTING About AUTO SETTING

Controlling AUTO mode typically consists of the following:

- T4AUTOCMIN: setting the minimum operating ambient temperature for cooling
- 2 T4AUTOHMAX: setting the maximum operating ambient temperature for heating

How to set the AUTO mode

To determine whether the AUTO mode is effective, go to MENU> FOR SERVICEMAN> AUTO MODE SETTING. Press OK. The following page is displayed.

Use ◀ ▶ and ▼ ▲ to scroll and adjust the parameter.

T4AUTOCMIN is the minimum operating ambient temperature for cooling in auto mode. The unit will turn off if the ambient temperature is lower when in space cooling operation.

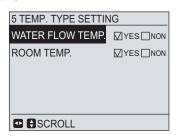
T4AUTOHMAX is the maximum operating ambient temperature for heating in auto mode. The unit will turn off if the ambient temperature is higher when in space heating operation.

The relationship between heat pump operation and ambient temperature is described in the picture below

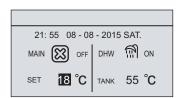
Heat mode by IBH or AHS	Heat mode by heat pump	OFF	COOL	OFF T4
T4H	MIN T4AUTO	OHMAX T4AUT	OCMIN T	4CMAX

In the picture, AHS is an additional heating source. IBH is a backup heater in the unit.

6.12 TEMP. TYPE SETTING


About TEMP. TYPE SETTING

The TEMP. TYPE SETTING is used for selecting whether the water flow temperature or room temperature(detected by the temperature sensor attached in the user interface) is used to control the ON/OFF of the heat pump.

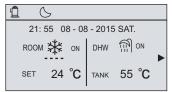

When ROOM TEMP. is enabled, the target outlet water temperature will be calculated from climate-related curves(refer to "10.1 Climate related curves").

How to enter the TEMP. TYPE SETTING

To enter the TEMP.TYPE SETTING, go to MENU> FOR SERVICEMAN> TEMP. TYPE SETTING. Press OK. The following page is displayed:

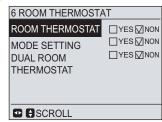
If you set WATER FLOW TEMP. to YES, and set ROOM TEMP. to NON, the water flow temperature will be displayed on the home page, and the water flow temperature will work as the target temperature.

If you set WATER FLOW TEMP. to YES, and set ROOM TEMP. to YES, then the water temperature will be displayed on the home page. Both water temperature and room temperature will be detected and when either the water temperature or the room temperature reaches the target temperature the unit will turn off.


In this state, the first target outlet water temperature can be set in the main page, the second one can be calculated from the climate-related curves. In heat mode, the higher one will be the real target outlet temperature, while in cool mode, the lower one will be selected.

If \blacktriangleright is pressed, the main page will display the room temperature:

If you set WATER FLOW TEMP. to NON, and set ROOM TEMP. to YES, then the room temperature will be displayed on the home page, and the room temperature will work as the target temperature. The target outlet water temperature can be calculated from the climate related curves.


6.13 ROOM THERMOSTAT

About ROOM THERMOSTAT

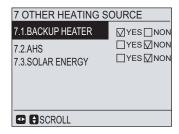
The ROOM THERMOSTAT is used to set whether the room thermostat is available.

How to set the ROOM THERMOSTAT

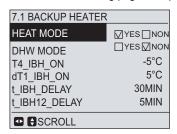
To set the ROOM THERMOSTAT, go to MENU> FOR SERVICEMAN> ROOM THERMOSTAT. Press OK. The following page is displayed:

If the room thermostat is available, select YES and press OK. In MODE SETTING, if YES is selected, the mode setting and the on/off function cannot be performed from the user interface. The timer function is unavailable; the operation mode, and the on/off function is decided by the room thermostat. The temperature setting can be done by the user interface. If NON is selected, the user interface can be used to set operation mode and target temperature, while the on/off function is determined by room thermostat; the timer function is unavailable. In DUAL ROOM THERMOSTAT, if YES is selected, the ROOM THERMOSTAT, MODE SETTING will turn to NON automatically, and the WATER FLOW TEMP. and ROOM TEMP. is forcibly set to YES. The timer function in the user interface is unavailable. The setting of operation mode and target temperature can be done on the user interface.

The "DUAL ROOM THERMOSTAT" function can be used only when application 6 (refer to **8.6 Application 6**) is applied. If zone A requires heating/cooling (ON signal from room thermostat 5A), the unit will turn on. The operation mode and target temperature of outlet water should be set in the user interface. If zone B requires heating/cooling (ON signal from room thermostat 5B), the unit will turn on. The operation mode can be set in the user interface, the target temperature of outlet water will be decided by ambient temperature (target outlet water temperature is calculated from climate-related curves, if no curves are selected, the default curve will be curve 4). If no heating/cooling is required for both zone A and zone B (OFF signal from thermostat 5A and 5B), the unit will turn off.


NOTE: The setting in the user interface should correspond to the wiring of thermostat. If YES is selected in ROOM THERMOSTAT and the MODE SETTING is NON, the wiring of thermostat should follow method B. If the MODE SETTING is YES, then the wiring should follow method A, If "DUAL ROOM THERMOSTAT" is selected, the wiring of room thermostat should follow "method C". (refer to "9.6.6 Connection for other components/For room thermostat")

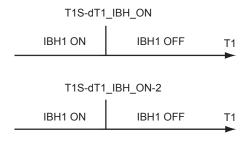
6.14 Other HEATING SOURCE About OTHER HEATING SOURCE


The OTHER HEATING SOURCE is used to set whether the backup heater, and additional heating sources like a boiler or solar energy kit is available.

How to set the OTHER HEATING SOURCE

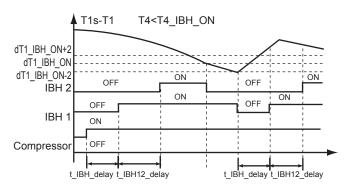
To set the OTHER HEATING SOURCE, go to MENU> FOR SERVICEMAN> OTHER HEATING SOURCE, Press OK. The following page will appear:

If backup heater is available, please select YES at BACKUP HEATER. Press OK and the following page is displayed:

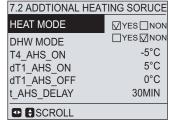

When the cursor is on HEAT MODE or DHW MODE, Use ◀ ▶ to select YES or NON. If YES is selected, the backup heater will be available in the corresponding mode, otherwise it will be unavailable.

When the cursor is on T4_IBH_ON, dT1_IBH_ON, t_IBH_DELAY, or t_IBH12_DELAY, Use \blacktriangleleft \blacktriangleright and \blacktriangledown \blacktriangle to scroll and adjust the parameter.

T4_IBH_ON is the ambient temperature for starting the backup heater. If the ambient temperature rises above T4_IBH_ON, the backup heater will be unavailable. The relationship between operation of the backup heater and the ambient is shown in the picture below.


	Heat mode by heat pump and IBH	Heat mode by heat pump	OFF	
T4HMI	N T4_IBH_ON	T4HM	AX	T4

dT1_IBH_ON is the temperature difference between T1S and T1 for starting the backup heater. Only when at the T1<T1S-dT1_IBH_ON can the backup heater turn on. When a second backup heater is installed, if the temperature difference between T1S and T1 is larger than dT1_IBH_ON+2, the second backup heater will turn on. The relationship between operation of the backup heater and the temperature difference is shown in the diagram below.

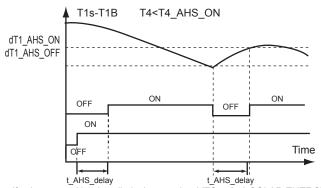


t_IBH_DELAY is the time that the compressor has run before the first backup heater turns on (if T1<T1S).

t_IBH12_DELAY is the time that the first backup heater has run before the second backup heater turns on.

If an additional heating source is available, please select YES at the corresponding position. Press OK and the following page is displayed:

When the cursor is on HEAT MODE or DHW MODE, Use ◀► to select YES or NON. If YES is selected, the additional heating source will be available in the corresponding mode, otherwise it will be unavailable.


NOTE: If YES is selected in DHW MODE, the installation of an additional heating source should follow "8.5 Application 5/Application b"

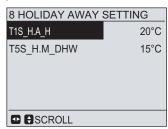
When the cursor is on T4_AHS_ON,dT1_AHS_ON,dT1_AHS_OFF or t_AHS_DELAY, Use $\blacktriangleleft \blacktriangleright$ and $\blacktriangledown \blacktriangle$ to scroll and adjust the parameter.

T4_AHS_ON is the ambient temperature for starting the additional heating source. When the ambient temperature rises above T4_AHS_ON, the additional heating source will be unavailable. The relationship between the operation of additional heating source and ambient temperature is shown in the picture below:

Heat mode by IBH only	Heat mode by heat pump and AHS	Heat mode by heat pump	OFF	T4
T4I	HMIN T4_AHS	ON T4H	MAX	

dT1_AHS_ON is the temperature difference between T1S and T1B for turning the additional heating source on(only when T1B<T1S-dT1_AHS _ON will the unit turn on), dT1_AHS_OFF is the temperature difference between T1S and T1B for turning the additional heating source off (when T1B≥T1S+dT1_AHS_OFF the additional heating source will turn off), t_AHS_DELAY is the time that the compressor has run before starting the additional heating source. It should be shorter than the additional heating source start time interval.The operation of the heat pump and the additional heating source is shown below:

If solar energy kit is installed, please select YES at "7.3 SOLAR ENERGY", then the solar pump will operate when the solar energy kit operating for domestic hot water heating, and the heat pump will stop operating for domestic hot water heating.


6.15 HOLIDAY AWAY SETTING

About HOLIDAY AWAY SETTING

The HOLIDAY AWAY SETTING is used to set the outlet water temperature to prevent freezing when away for holiday.

How to enter the HOLIDAY AWAY SETTING

To enter the HOLIDAY AWAY SETTING, go to MENU> FOR S ERVICEMAN> HOLIDAY AWAY SETTING. Press OK. The following page is displayed:

When the cursor is on T1S_H.A._H or T5S_H.M_DHW, Use ◀ ▶ and ▼ ▲ to scroll and adjust the parameter, T1S_H.A._H is the target outlet water temperature for space heating when in holiday away mode. T5S_H.M_DHW is the target outlet water temperature for domestic hot water heating when in holiday away mode.

6.16 ECO/COMFORT MODE SETTING

■ About ECO/COMFORT MODE SETTING

The ECO/COMFORT MODE SETTING is used to set the target room temperature or outlet water temperature when in ECO/COMFORT MODE.

■ How to enter the ECO/COMFORT MODE SETTING

To enter the ECO/COMFORT MODE SETTING, go to MENU> FOR SERVICEMAN> COMFORT MODE SETTING. Press OK. The following page will appear:

9 ECO/COMFORT MODE SETTIN	IG
ECO COOL FLOW TEMP	20°C
ECO COOL ROOM TEMP.	26°C
ECO HEAT FLOW TEMP.	35°C
ECO HEAT ROOM TEMP.	17°C
COMFORT COOL FLOW TEMP.	7°C
COMFORT COOL ROOM TEMP.	24°C
■ ⊕SCROLL	1/2

When the cursor is on ECO COOL FLOW TEMP., ECO COOL ROOM TEMP., ECO HEAT FLOW TEMP., ECO HEAT ROOM TEMP., COMFORT COOL FLOW TEMP., COMFORT COOL ROOM TEMP., COMFORT HEAT FLOW TEMP., COMFORT HEAT ROOM TEMP.,

Using ◀,▶,▼,▲ to scroll and adjust the parameter.

ECO COOL FLOW TEMP. is the target outlet water temperature when in ECO COOL mode.

ECO COOL ROOM TEMP. is the target room temperature when in ECO COOL mode. This value will be useful only when the "YES" is selected in TEMP. TYPE SETTING/ROOM TEMP.

ECO HEAT FLOW TEMP. is the target outlet water temperature when in ECO HEAT mode.

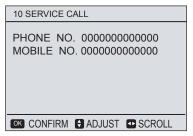
ECO HEAT ROOM TEMP. is the target room temperature when in ECO HEAT mode. This value will be useful only when the "YES" is selected in TEMP. TYPE SETTING/ROOM TEMP.

COMFORT COOL FLOW TEMP. is the target outlet water temperature when in COMFORT COOL mode.

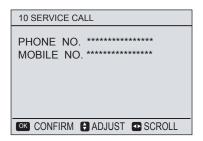
COMFORT COOL ROOM TEMP. is the target room temperature when in COMFORT COOL mode. This value will be useful only when the "YES" is selected in TEMP. TYPE SETTING/ROOM TEMP.

COMFORT HEAT FLOW TEMP. is the target outlet water temperature when in COMFORT HEAT mode.

COMFORT HEAT ROOM TEMP. is the target room temperature when in COMFORT HEAT mode. This value will be useful only when the "YES" is selected in TEMP. TYPE SETTING/ROOM TEMP.


6.17 SERVICE CALL

■ About SERVICE CALL


The installers can set the phone number of the local dealer in SERVICE CALL. If unit can't work, you can call this number for help.

■ How to set the SERVICE CALL

To set the SERVICE CALL, go to MENU> FOR SERVICEMAN> SERVICE CALL. Press OK. The following page will appear:

Using ▼, ▲ to scroll and set the phone number, the maxmuim length of the phone number is 13, if the length of phone number short than 12, please input ■, as described in the picture below:

The number displayed on the user interface is the phone number of your local dealer.

6.18 RESTORE FACTORY SETTINGS

■ About RESTORE FACTORY SETTINGS

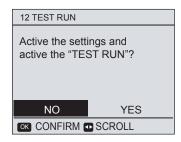
The RESTORE FACTORY SETTING is used to restore all the parameters set in the user interface to the factory setting.

■ How to set the RESTORE FACTORY SETTINGS

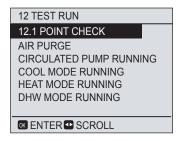
To restore factory settings, go to MENU> FOR SERVICEMAN> RESTORE FACTORY SETTINGS. Press OK. The following page will appear:

Using ◀, ► to scroll the cursor to YES and press OK, the following page will disapper:

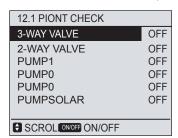
After a few seconds, all the parameters set in the user interface will restore to factory settings


6.19 TEST RUN

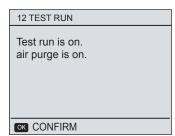
■ About TEST RUN


The TEST RUN is used to check correct operation of the values, air purge, circulted pump running, cooling, heating and domestic water heating

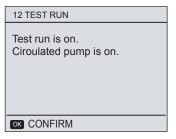
■ How to enter the TEST RUN


To enter the test run, go to MENU> FOR SERVICEMAN> TEST RUN. Press OK. The following page will appear:

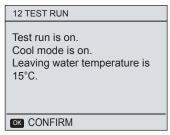
If YES is selected, the following page will appear:


If 12.1 POINT CHECK is selected, the following page will disappear

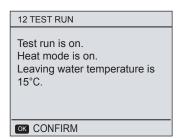
12.1 PIONT CHECK	
PUMPDHW	OFF
BACKUP HEATER1	OFF
BACKUP HEATER2	OFF
TANK HEATER	OFF
SCROL ON/OFF ON/OFF	


Using ▼, ▲ to scroll to the components you want to check and press ON/OFF, for example, when 3-WAY VALUE is selected and ON/OFF pressed, if the 3-way value is open/close, then the operation of 3-way value is normal, so does other components.

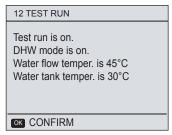
If you select AIR PURGE and OK is pressed, the page will displayed as following:


When in air purge mode, the 3-way value will open, the 2-way value will close, 60s later the pump in the unit(PUMPI) will operate for 10min, during which the flow switch will not work. after the pump stoped, the 3-way value will close and the 2-way value will open, 60s later both the PUMPI and PUMPO will operate until the next command recived.

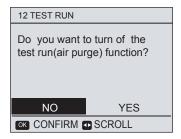
When the CIRCULATED PUMP RUNNING is selected, the page will displayed as following:


When circulated pump running is turned on, all the running components will stop, 60min later,the 3-way value will open, the 2-way value will close, 60s later PUMPI will operate , 30s later, if the flow switch checked normal flow,the PUMPI will operate for 3min, after the pump stoped, the 3-way value will close and the 2-way value will open, 60s later the both PUMPI and PUMPO will operate, 2min later, the flow switch will check the water flow , if the flow switchclose for 15s, the PUMPI and PUMPO will operate until the next command recived.

When the COOL MODE RUNNING is selected, the page will displayed as following:


During COOL MODE test running, the default target outlet water temperature is 7°C, the unit will operate until the water temperature drop to a certain value or the next command recived.

When the HEAT MODE RUNNING is selected, the page will displayed as following:



During HEAT MODE test running, the default target outlet water temperature is 35°C, the first backup heater will turn on after the compressor runned for 10min, 60s later the second backup heater will turn on. After the two backup heater runned for 3min, both backup heater will turn off, the heat pump will operate until the water temperature increase to a certain value or the next command recived.

When the HEAT MODE RUNNING is selected, the page will displayed as following:

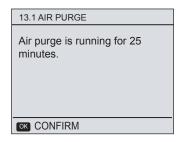
During DHW MODE test running, the default target temperature of the domestic water is 55°C, the booster heater will turn on after the compressor runned for 10min, the booster heater will turn off 3min later, the heat pump will operate until the water temperature increase to a certain value or the next command recived. During test run, all the buttons except OK is invalid. If you want to turn off the test run,please press OK, for example ,when the unit is in air purge mode, after you press OK,the page will displayed as following:

Using \blacktriangleleft , \blacktriangleright to scroll the cursor to YES and press OK, the test run will turn off.

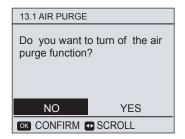
6.20 SPECIAL FUNCTION

■ About SPECIAL FUNCTION

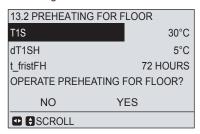
The SPECIAL FUNCTION contains AIR PURGE, PREHEATING FOR FLOOR, FLOOR DRYING UP. It's used in some special conditions, for example: the initial start of the unit, initial running of floor heating.


■ How to enter the SPECIAL FUNCTION

Go to MENU> FOR SERVICEMAN> SPECIAL FUNCTION.


Use ▼, ▲ to scroll and use OK to enter. During first operation of the unit, air may remained in the system which can case malfunction during operation, so it is necessary to run air purge function to release the air(make sure the air purge value opened).

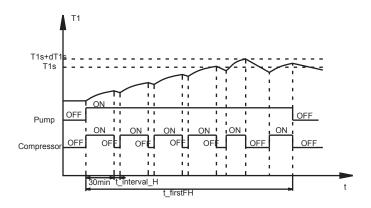
Go to FOR SERVICEMAN > 13 SPECIAL FUNCTION>13.1AIR PURGE:


During air purge, the 3-way value will open, the 2-way value will close, 60seconds later the pump in the unit(PUMPI) will operate for 10min, during which the flow switch will not work. after the pump stoped, the 3-way value will close and the 2-way value will open, 60s later the both the PUMPI and PUMPO will operate until the stopping command recived

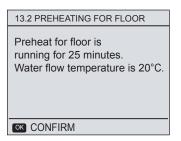
The number displayed on the page is the time that the air purge has running. During air purge, all the buttons except OK is invalid. If you want to turn off the air purge, please press OK, then the following page will appear:

Use ◀. ▶ to scroll and use OK to confirm.

If PREHEATING FOR FLOOR is selected, after press OK , the page will displayed as following:



When the cursor is on T1S, dT1SH or t_fristFH, Using \blacktriangleleft , \blacktriangleright , \blacktriangledown , \blacktriangle to scroll and adjust the parameter.


T1S is the target outlet water temperature in preheating for floor mode, the T1S set here should equal to the target outlet water temperature set in the main page.

dT1SH is the temperature difference for stopping the unit.(When T1≥T1S+dT1S the heat pump will turn off)

t_fristFH is the time last for preheating floor. The operation of the unit during preheating for floor described in the picture below:

When the cursor is on OPERATE PREHEATING FOR FLOOR, Using ◀, ▶to scroll to YES and press OK, the page will be displayed as following:

During preheating for floor, all the buttons except OK is invalid. If you want to turn off the preheating for floor, please press OK, then the page will displayed as following:

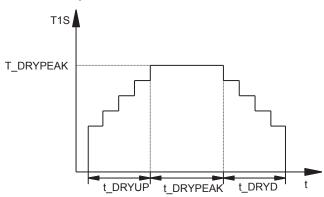
Do you want to turn of the preheating for floor function?

NO YES

CON CONFIRM SCROLL

Using ◀, ►to scroll the cursor to YES and press OK, the preheating for floor will turn off.

Before floor heating, if large amount of water remain in the floor, the floor may be deformed or even rupture during floor heating operation, in order to protect the floor, floor drying is necessary, during which the temperature of the floor should be increased gradually.


If FLOOR DRYING UP is selected, after press OK ,the page will displayed as following:

8 days
5 days
45°C
15:00
5-2015
1/2

When the cursor is on WARM UP TIME(t_DRYUP), KEEP TIME (t_HIGHPEAK), TEMP. DOWN TIME(t_DRYD), PEAK TEMP. (T_DRYPEAK), START TIME or START DATA, Using ◀, ▶, ▼, ▲ to scroll and adjust the parameter.

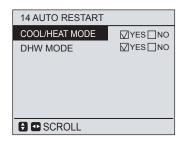
- t DRYUP is the day for warming up;
- t_HIGHPEAK is the day that high temperature last;
- t_DRYD is the day for droping temperature
- T_DRYPEAK is the target peak temperature of water flow during floor drying up.

The target outlet water temperature during floor drying up described in the picture below:

When the cursor is on OPERATE FLOOR DRYING UP?, Using ◀, ▶ to scroll to YES and press OK, the page will be displayed as following:

During floor drying up, all the buttons except OK is invalid. When the heat pump malfunction, the floor drying mode will turn off when the backup heater and additional heating source is unavailable. If you want to turn off the floor drying up, please press OK, then the page will displayed as following:

Using \blacktriangleleft , \blacktriangleright to scroll the cursor to YES and press OK, the floor drying up will turn off.


6.21 AUTO RESTART

■ About AUTO RESTART

The AUTO RESTART function is used to select whether the unit reapplies the user interface settings at the time of the power supply returns after power supply failure.

■ How to set the AUTO RESTART

Go to MENU> FOR SERVICEMAN>AUTO RESTART.

Use ▼, ▲, ◄, ► to scroll and use OK to select YES or NON to enable or disable the auto restart function. If the auto restart function is enabled, when power returns after a power supply failure, the AUTO RESTART function reapplies the user interface settings at the time of the power supply failure. If this function is disabled, when power returns after a power supply failure, the unit won't auto restart.

6.22 Nouns illutration

The nouns related to this unit illustrated in the table bellow

Parameter	Illustration
T1	Outlet water temperature of backup heater
T1B	Outlet water temperature of additional heating source
T1S	Target outlet water temperature
T2	Temperature of refrigerant at outlet /inlet of plate heat exchanger when in heat mode/cool mode
T2B	Temperature of refrigerant at inlet /oultet of plate heat exchanger when in heat mode/cool mode
T3	Temperature of tube at outlet/inlet of condenser when in cool/heat mode
T4	Ambient temperature
T5	Temperature of domestic hot water
Th	Suction temperature
TP	Discharge temperature
Tw_in	Inlet water temperature of plate heat exchanger
Tw_out	Outlet water temperature of plate heat exchanger
AHS	Additional heating source
IBH1	The first backup heater
IBH 2	The second backup heater
TBH	Backup heater in the domestic hot water tank
Pe	Evaporate/condense pressure in cool/heat mode

7 TEST RUN AND FINAL CHECK

The installer is obliged to verify correct operation of unit after installation.

7.1 Final check

Before switching on the unit, read following recommendations:

- When the complete installation and all necessary settings have been carried out, close all front panels of the unit and refit the unit cover
- The service panel of the switch box may only be opened by a licensed electrician for maintenance purposes.

NOTE

That during the first running period of the unit, required power input may be higher than stated on the nameplate of the unit. This phenomenon originates from the compressor that needs elapse of a 50 hours run in period before reaching smooth operation and stable power consumption.

7.2 Test run operation (manual)

If required, the installer can perform a manual test run operation at any time to check correct operation of air purge, heating, cooling and domestic water heating, refer to "Field settings/TEST RUN".

8 MAINTENANCE AND SERVICE

In order to ensure optimal availability of the unit, a number of checks and inspections on the unit and the field wiring have to be carried out at regular intervals.

This maintenance has to be carried out by your local technician.

In order to ensure optimal availability of the unit, a number of checks and inspections on the unit and the field wiring have to be carried out at regular intervals.

This maintenance has to be carried out by your local Kaysun technician

DANGER

ELECTRIC SHOCK

- Before carrying out any maintenance or repair activity, always switch off the circuit breaker on the supply panel, remove the fuses (or switch off the circuit breakers) or open protection devices of the unit.
- Make sure that before starting any maintenance or repair activity, also the power supply to the outdoor unit is switched off.
- Do not touch live parts for 10 minutes after the power supply is turned off because of high voltage risk.
- The heater of the compressor may operate even in stop mode.
- Please note that some sections of the electric component box are hot.
- Make sure you do not touch a conductive section.
- Do not rinse the unit. This may cause electric shocks or
- When service panels are removed, live parts can be easily touched by accident.
 - Never leave the unit unattended during installation or servicing when service panel is removed.

The described checks must be executed at least once a year by qualified personnel.

- 1. Water pressure
 - Check if the water pressure is above 1 bar. If necessary add water.
- 2. Water filter
 - Clean the water filter.
- 3. Water pressure relief valve

Check for correct operation of the pressure relief valve by turning the black knob on the valve counter-clockwise:

- If you do not hear a clacking sound, contact your local dealer.
- In case the water keeps running out of the unit, close both the water inlet and outlet shut-off valves first and then contact your local dealer.
- 4. Pressure relief valve hose
 - Check that the pressure relief valve hose is positioned appropriately to drain the water.
- 5. Backup heater vessel insulation cover
- Check that the backup heater insulation cover is fastened tightly around the backup heater vessel.
- Domestic hot water tank pressure relief valve (field supply)
 Applies only to installations with a domestic hot water tank.
 Check for correct operation of the pressure relief valve on the domestic hot water tank.
- 7. Domestic hot water tank booster heater

Applies only to installations with a domestic hot water tank. It is advisable to remove lime buildup on the booster heater to extend its life span, especially in regions with hard water. To do so, drain the domestic hot water tank, remove the booster heater from the domestic hot water tank and immerse in a bucket (or similar) with lime-removing product for 24 hours.

- 8. Unit switch box
 - Carry out a thorough visual inspection of the switch box and look for obvious defects such as loose connections or defective wiring.
 - Check for correct operation of contactors by use of an ohm meter. All contacts of these contactors must be in open position.
- 9. In case of use of glyco
 - (Refer to Water pipework Caution: "Use of glycol")

Document the glycol concentration and the pH-value in the system at least once a year.

- A pH-value below 8.0 indicates that a significant portion of the inhibitor has been depleted and that more inhibitor needs to be added.
- When the pH-value is below 7.0 then oxidation of the glycol occurred, the system should be drained and flushed thoroughly before severe damage occurs.

Make sure that the disposal of the glycol solution is done in accordance with relevant local laws and regulations.

9 TROUBLE SHOOTING

This section provides useful information for diagnosing and correcting certain troubles which may occur in the unit.

This troubleshooting and related corrective actions may only be carried out by your local technician.

9.1 General guidelines

Before starting the troubleshooting procedure, carry out a thorough visual inspection of the unit and look for obvious defects such as loose connections or defective wiring.

CAUTION

When carrying out an inspection on the switch box of the unit, always make sure that the main switch of the unit is switched off.

When a safety device was activated, stop the unit and find out why the safety device was activated before resetting it. Under no circumstances safety devices may be bridged or changed to a value other than the factory setting. If the cause of the problem cannot be found, call your local dealer.

If the pressure relief valve is not working correctly and is to be replaced, always reconnect the flexible hose attached to the pressure relief valve, to avoid water dripping out of the unit!

w	6	
	Ŋ	V

NOTE

For problems related to the optional solar kit for domestic water heating, refer to the troubleshooting in the Installation & owner's manual of that kit.

9.2 General symptoms

Symptom 1: The unit is turned on but the unit is not heating or cooling as expected

POSSIBLE CAUSES	CORRECTIVE ACTION
The temperature setting is not correct.	Check the controller set point. T4HMAX, T4HMIN in heat mode.T4CMAX, T4CMIN in cool mode. T4DHWMAX, T4DHWMIN in DHW mode.
The water flow is too low.	Check that all shut off valves of the water circuit are completely open. Check if the water filter needs cleaning. Make sure there is no air in the system (purge air). Check on the manometer that there is sufficient water pressure. The water pressure must be>1 bar (water is cold). Make sure that the expansion vessel is not broken. Check that the resistance in the water circuit is not too high for the pump
The water volume in the installation is too low.	Make sure that the water volume in the installation is above the minimum required value (refer to "Water pipework/Checking the water volume and expansion vessel pre-pressure").

Symptom 2: The unit is turned on but the compressor is not starting (space heating or domestic water heating)

POSSIBLE CAUSES	CORRECTIVE ACTION
The unit must start up out of its operation range (the water temperature is too low).	In case of low water temperature, the system utilizes the backup heater to reach the minimum water temperature first (12°C). • Check that the backup heater power supply is correct. • Check that the backup heater thermal fuse is closed. • Check that the backup heater thermal protector is not activated. • Check that the backup heater contactors are not broken.

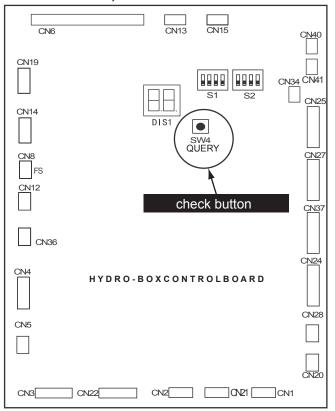
POSSIBLE CAUSES	CORRECTIVE ACTION
There is air in the system.	Purge air.
Water pressure at pump inlet is too low.	 Check on the manometer that there is sufficient water pressure. The water pressure must be > 1 bar (water is cold). Check that the manometer is not broken. Check that the expansion vessel is not broken. Check that the setting of the prepressure of the expansion vessel is correct (refer to "Water pipework/ Checking the water volume and expansion vessel pre-pressure").

Symptom 4: The water pressure relief valve opens

POSSIBLE CAUSES	CORRECTIVE ACTION
The expansion vessel is broken.	Replace the expansion vessel.
The filling water pressure in the installation is higher than 0.3MPa.	Make sure that the filling water pressure in the installation is about 0.15~0.20MPa (refer to "Water pipework/Checking the water volume and expansion vessel pre-pressure").

Symptom 5: The water pressure relief valve leaks

POSSIBLE CAUSES	CORRECTIVE ACTION
Dirt is blocking the water pressure relief valve outlet.	Check for correct operation of the pressure relief valve by turning the red knob on the valve counter clockwise: If you do not hear a clacking sound, contact your local dealer. In case the water keeps running out of the unit, close both the water inlet and outlet shut-off valves first and then contact your local dealer.


Symptom 6: Space heating capacity shortage at low outdoor temperatures

POSSIBLE CAUSES	CORRECTIVE ACTION
Backup heater operation is not activated.	Check that the "OTHER HEATING SOURCE/ BACKUP HEATER" is enabled, see "Field settings" Check whether or not the thermal protector of the backup heater has been activated (refer to "Switch box main components", "Backup heater thermal protector" for location of the reset button). Check if booster heater is running, the backup heater and booster heater can't operate simultaneously.
Too much heat pump capacity is used for heating domestic hot water (applies only to installations with a domestic hot water tank).	Check that the 't_DHWHP_MAX' and "t_DHWHP_RESTRICT" are configured appropriately: • Make sure that the 'DHW PRIORITY' in the user interface is disabled. • Raise the "T4_TBH_ON" in the user interface/FOR SERVICEMAN to activate the booster heater for domestic water heating.

10 PARAMETERS CHECK IN THE UNIT

To check the parameters of hydraulic box, open the cover and you'll see the PCB like following, the digital display will show the temperature of outlet water in normal condition('0' will display if the unit is off or error code will display if error occurs). Long press the check button and the digital display will show the operating mode, and then press the check button in sequence, the digital display will show the value, the implication of the value illustrated in the table below:

hydraulic box SW4

Number	Implication	
0	Temperature of outlet water when unit is on, when the unit is off, '0' will display	
1	Operation mode(0—OFF, 2—COOL, 3—HEAT, 5—Water heating)	
2	Capacity requirement before correction	
3	Capacity requirement after correction	
4	Outlet water temperature of backup heater	
5	Outlet water temperature of additional heating source	
6	Target outlet water temperature calculated from climate related curves	
7	Room temperature	
8	Temperature of domestic hot water	
9	Temperature of refrigerant at outlet /inlet of plate heat exchanger when in heat mode/cool mode	
10	Temperature of refrigerant at inlet /outlet of plate heat exchanger when in heat mode/cool mode	
11	Temperature of water at outlet of plate heat exchanger	
12	Temperature of water at inlet of plate heat exchanger	
13	Ambient temperature	
14	Current of backup heater 1	
15	Current of backup heater 2	
16	Error/protection code for the last time,'—'will display if no error/protection occur	
17	Error/protection code for the second last time,'—'will display if no error/protection occur	
18	Error/protection code for the third last time,'—'will display if no error/protection occur	
19	Version of software(hydraulic module)	

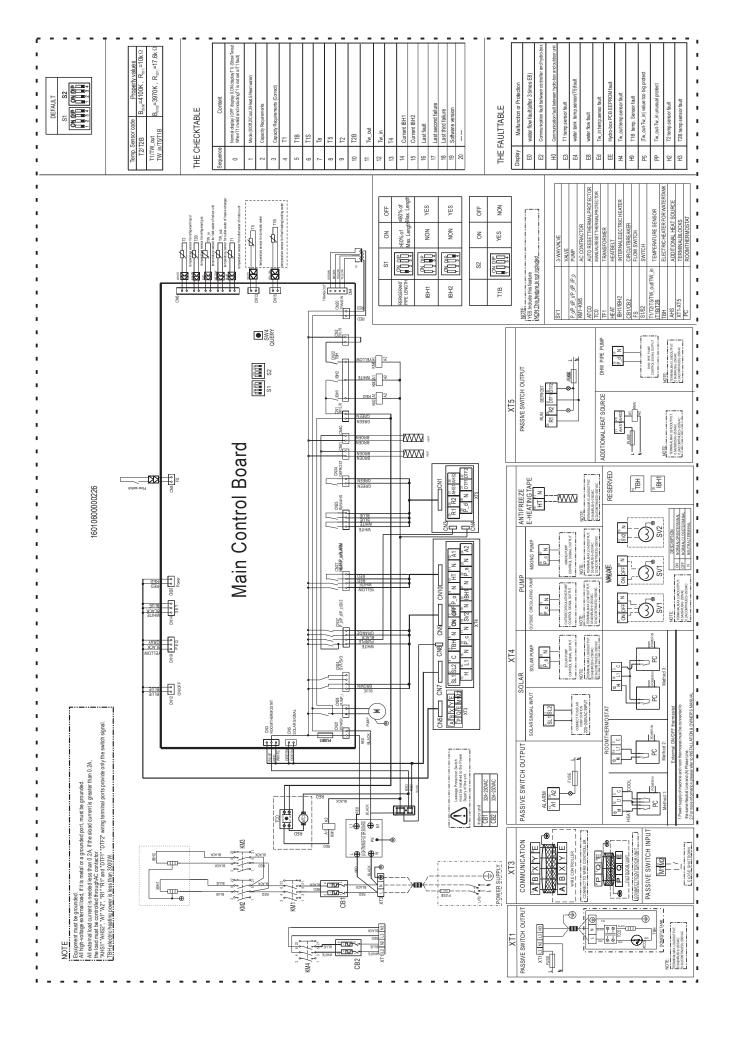
10.1 Error codes

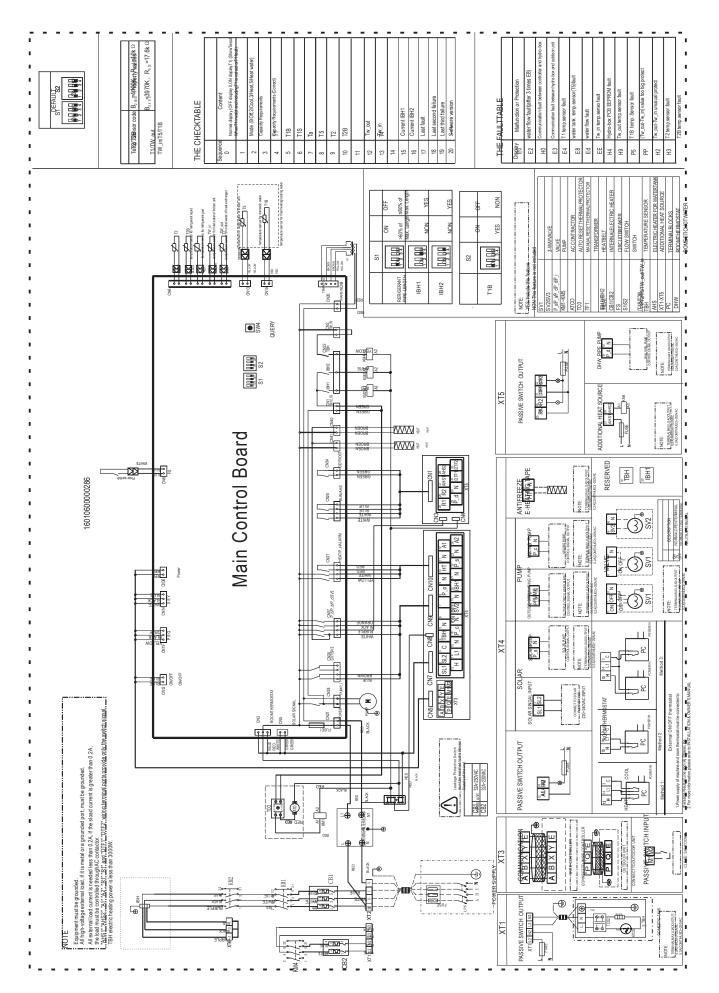
When a safety device is activated, an error code will be displayed on the user interface.

A list of all errors and corrective actions can be found in the table below.

Reset the safety by turning the unit OFF and back ON.

In case this procedure for resetting the safety is not successful, contact your local dealer.


Error code	Failure cause	Corrective action	
E0	Water flow fault (Three times E8)	Refer to E8	
E1	Power fault (only for three phase unit)	Connect the power supply cables in normal phase. Change any two of the three power supply cables (L1, L2, L3) to correct phase	
E2	Communication fault between controller(use inter face) and indoor unit	Check the wiring between user interface and unit, or contact your local dealer	
E3	Indoor unit(hydro- box) water outlet temperature sensor(T1) fault	Contact your local dealer.	
E4	Water(domestic hot water) tank temperature sensor(T5) fault	Contact your local dealer.	
E5	Outdoor unit exchange temperature sensor (T3) fault	Contact your local dealer	
E6	Outdoor unit ambient temperature sensor(T4) fault	Contact your local dealer	
E8	Water flow fault	 Check that all shut off valves of the water circuit are completely open. Check if the water filter needs cleaning. Check that the unit is operating within its operating range (refer to "TECHNICAL SPECIFICATIONS"). Also refer to "Charging water" Make sure there is no air in the system (purge air). Check on the manometer that there is sufficient water pressure. The water pressure must be >1 bar (water is cold). Check that the pump speed setting is on he highest speed. Make sure that the expansion vessel is not broken. Check that the resistance in the water circuit is not too high for the pump (refer to "Setting the pump speed"). If this error occurs at defrost operation (during space heating or domestic water heating), make sure that the backup heater power supply is wired correctly and that fuses are not blown. Check that the pump fuse and PCB fuse are not blown. 	


Error code	Failure cause	Corrective action
E9	Compressor suction line temperature sensor(Th) fault	Contact your local dealer
EA	Compressor discharge line temperature sensor(Tp) fault	Contact your local dealer
Ed	Indoor unit(hydro-box) plate exchanger water inlet temperature sensor (Tw_in) fault	Contact your local dealer
EE	Indoor unit(hydro-box) PCB EEPROM fault	Contact your local dealer
EP	Water tank heater current leakage fault	Contact your local dealer
Н0	Communication fault between indoor unit(hydro-box) and outdoor unit	Contact your local dealer
H1	Communication fault between outdoor unit and IR341	Contact your local dealer
H2	Indoor unit(hydro- box) plate exchanger Freon outlet(heat) temperature sensor (T2) fault	Contact your local dealer
НЗ	Indoor unit(hydro- box) plate exchanger Freon outlet(heat) temperature sensor (T2B) fault	Contact your local dealer
H4	Three times P6 Protects	Contact your local dealer
H5	Room temperature sensor (Ta) fault	Contact your local dealer
H6	DC fan motor fault	Contact your local dealer
H7	DC compressor voltage protect fault	Contact your local dealer
Н8	Pressure sensor fault	Contact your local dealer
H9	Additional heat source water outlet temperature sensor(T1B) fault	Contact your local dealer
HE	Heat mode fan is running in A region for minutes (continuously low speed for long time)	Contact your local dealer
HF	Outdoor unit EEPROM fault	Contact your local dealer

Eode code	Failure cause	Corrective action	
НС	Indoor unit(hydro-box) heater without current fault		
НН	10 times H6 in 120 minutes	Contact your local dealer	
HL	PFC module fault	Contact your local dealer	
C7	Transducer module temperature too high protect	Contact your local dealer	
С9	Operate frequency unusual protect	Contact your local dealer	
P1	Heat pump system high pressure protect	Check that the unit is operating within its operating range, contact your local dealer	
Р3	DC compressor current protect	Check that the unit is operating within its operating range, contact your local dealer	
P4	Compressor discharge temperature too high protect	Clean the outdoor coil. If the coil is clean, contact your local dealer	
P5	Tw_out -Tw_in value too big protect	Checking if the flow rate in the system is too small	
P6	Transducer module protect	Contact your local dealer	
P9	DC fan motor protect	Contact your local dealer	
Pd	Outdoor unit exchanger temperature (T3) too high protect	Clean the outdoor coil. If the coil is clean, contact your local dealer.	
PL	Transducer module radiator temperature too high protect	Clean the fines. If the fin is clean, contact your local dealer	
PP	Tw_out- Tw_in unusual protect	Contact your local dealer	
Р0	Heat pump system low pressure protect	Contact your local dealer	
НА	Indoor unit(hydro-box) plate exchanger water outlet temperature sensor (Tw_out) fault		
F1	DC generatrix low voltage protection	Contact your local dealer	
HP	3 times low pressure protect in 1 hour in cooling mode	Contact your local dealer.	

11 TECHNICAL SPECIFICATIONS

Model	KIT KHP BI 8 VN	KIT KHP BI 16 VN	KIT KHP BI 16 TN	
Power supply	220-240V~ 50Hz		380-415V3N~50Hz	
Rated power input	3.1kW	3.1kW	4.6kW	
Rated current	13.5A	13.5A	6.7A	
Norminal capacity	Refer to the technical data			
Dimensions (WxHxD)[mm]		400*865*427		
Packing (WxHxD)[mm]		495x1040x495		
Heat exchanger		Plate heat exchanger		
Electric heater	1.5kWx2	1.5kWx2	1.5kWx3	
Internal water volume	5.0L	5.5L	5.5L	
Safety pressure of water circuit	3bar(g)	3bar(g)	3bar(g)	
Filter mesh	80	80	80	
Min. water flow (flow switch)	11L/min	16L/min	16L/min	
Pump				
Туре	DC inverter centrifugal water cooling pump			
Max. head	6m	7.5m	7.5m	
Power input	3~45W	4~75W	4~75W	
No. of speed	3	3	3	
Expanssion vessel				
Volume	5L	5L	5L	
Max. operating pressure	8bar(g)	8bar(g)	8bar(g)	
Pre-charge pressure	1.5bar(g)	1.5bar(g)	1.5bar(g)	
Weight				
Net weight	51kg	54kg	53kg	
Gross weight	57kg	60kg	59kg	
Connections				
Refrigerant gas/liquid side	φ15.9 / φ9.52			
Water inlet/outlet	R1"			
Drain connection	925			
Operation range				
Outlet water (Heating mode)	+25 ~ +60°C			
Outlet water (Cooling mode)	+5 ~ +25°C			
Domestic hot water	+40 ~ +60°C			
Ambient temperature	-20 ~ +46°C			
Water pressure	0.3~3bar			

MD16IU-008BW(DZ) 16110600A00268

MAIN OFFICE Blasco de Garay, 4-6 08960 Sant Just Desvern

(Barcelona) Tel. +34 93 480 33 22 http://home.frigicoll.es/

http://www.kaysun.es/en/

MADRID

Senda Galiana, 1 Polígono Industrial Coslada Coslada (Madrid) Tel. +34 91 669 97 01 Fax. +34 91 674 21 00 madrid@frigicoll.es